Spaces:
Running
Running
File size: 3,049 Bytes
3e25102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
from transformers import pipeline
import os
import azure.cognitiveservices.speech as speechsdk
dialects = {"Palestinian/Jordanian": "P", "Syrian": "S", "Lebanese": "L", "Egyptian": "E"}
translator = pipeline(task="translation", model="guymorlan/English2Dialect")
transliterator = pipeline(task="translation", model="guymorlan/DialectTransliterator")
speech_config = speechsdk.SpeechConfig(subscription=os.environ.get('SPEECH_KEY'), region=os.environ.get('SPEECH_REGION'))
def translate_text(input_text):
inputs = [f"{val} {input_text}" for val in dialects.values()]
result = translator (inputs)
audio_files = []
return result[0]["translation_text"], result[1]["translation_text"], result[2]["translation_text"], result[3]["translation_text"]
def get_audio(input_text):
audio_config = speechsdk.audio.AudioOutputConfig(filename=f"{input_text}.wav")
speech_config.speech_synthesis_voice_name='ar-SY-AmanyNeural'
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(input_text).get()
return f"{input_text}.wav"
def get_transliteration(input_text):
result = transliterator([input_text])
return result[0]["translation_text"]
css = """
#liter textarea, #trans textarea { font-size: 25px;}
#trans textarea { direction: rtl; };
"""
with gr.Blocks(title = "English to Levantine Arabic", css=css) as demo:
with gr.Row():
with gr.Column():
input_text = gr.inputs.Textbox(label="Input", placeholder="Enter English text", lines=1)
gr.Examples(["I wanted to go to the store yesterday, but it rained", "How are you feeling today?", "Let's go to your place"], input_text)
btn = gr.Button("Translate", label="Translate")
gr.Markdown("Built by [Guy Mor-Lan](mailto:guy.mor@mail.huji.ac.il). Pronunciation model is specifically tailored to urban Palestinian Arabic. Text-to-speech uses Microsoft Azure's API and may provide different result from the transliterated pronunciation.")
with gr.Column():
pal = gr.Textbox(lines=1, label="Palestinian", elem_id="trans")
pal_translit = gr.Textbox(lines=1, label="Palestinian Pronunciation", elem_id="liter")
sy = gr.Textbox(lines=1, label="Syrian", elem_id="trans")
lb = gr.Textbox(lines=1, label="Lebanese", elem_id="trans")
eg = gr.Textbox(lines=1, label="Egyptian", elem_id="trans")
with gr.Row():
audio = gr.Audio(label="Audio - Palestinian", interactive=False)
audio_button = gr.Button("Get Audio", label="Get Audio")
audio_button.click(get_audio, inputs=[pal], outputs=[audio])
btn.click(translate_text, inputs=input_text, outputs=[pal, sy, lb, eg])
input_text.submit(translate_text, inputs=input_text, outputs=[pal, sy, lb, eg])
pal.change(get_transliteration, inputs=[pal], outputs=[pal_translit])
demo.launch()
|