Spaces:
Running
Running
File size: 13,578 Bytes
3e25102 c1d1323 3e25102 c1d1323 3e25102 c1d1323 df677ba 3e25102 c1d1323 df677ba c1d1323 df677ba c1d1323 dbacc9b 964b4e8 c1d1323 964b4e8 3e25102 dbacc9b 09e0776 dbacc9b c1d1323 dbacc9b c1d1323 3e25102 df677ba 964b4e8 df677ba 7da7e15 df677ba 3e25102 c1d1323 964b4e8 3e25102 c1d1323 3e25102 c1d1323 3e25102 c1d1323 09e0776 c1d1323 09e0776 c1d1323 09e0776 c1d1323 09e0776 c1d1323 7da7e15 c1d1323 7da7e15 dbacc9b c1d1323 dbacc9b 2e03cd0 7da7e15 c1d1323 7da7e15 2e03cd0 c1d1323 df677ba c1d1323 dbacc9b c1d1323 dbacc9b df677ba dbacc9b df677ba 7da7e15 c1d1323 7da7e15 c1d1323 2e03cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import gradio as gr
from transformers import pipeline, MarianMTModel, AutoTokenizer
import os
import azure.cognitiveservices.speech as speechsdk
import matplotlib.pyplot as plt
import numpy as np
dialects = {"Palestinian/Jordanian": "P", "Syrian": "S", "Lebanese": "L", "Egyptian": "E"}
# translator_en2ar = pipeline(task="translation", model="guymorlan/English2Dialect")
translator_en2ar = MarianMTModel.from_pretrained("guymorlan/English2Dialect", output_attentions=True)
tokenizer_en2ar = AutoTokenizer.from_pretrained("guymorlan/English2Dialect")
translator_ar2en = MarianMTModel.from_pretrained("guymorlan/Shami2English", output_attentions=True)
tokenizer_ar2en = AutoTokenizer.from_pretrained("guymorlan/Shami2English")
transliterator = pipeline(task="translation", model="guymorlan/DialectTransliterator")
speech_config = speechsdk.SpeechConfig(subscription=os.environ.get('SPEECH_KEY'), region=os.environ.get('SPEECH_REGION'))
def generate_diverging_colors(num_colors, palette='Set3'): # courtesy of ChatGPT
# Generate a colormap with a specified number of colors
cmap = plt.cm.get_cmap(palette, num_colors)
# Get the RGB values of the colors in the colormap
colors_rgb = cmap(np.arange(num_colors))
# Convert the RGB values to hexadecimal color codes
colors_hex = [format(int(color[0]*255)<<16|int(color[1]*255)<<8|int(color[2]*255), '06x') for color in colors_rgb]
return colors_hex
def align_words(outputs, tokenizer, encoder_input_ids, decoder_input_ids, threshold=0.4, skip_first_src=True):
alignment = []
for i, tok in enumerate(outputs.cross_attentions[2][0][7]):
alignment.append([[i], (tok > threshold).nonzero().squeeze(-1).tolist()])
merged = []
for i in alignment:
token = tokenizer.convert_ids_to_tokens([decoder_input_ids[0][i[0]]])[0]
if token not in tokenizer.convert_tokens_to_ids(["</s>", "<pad>", "<unk>"]):
if merged:
tomerge = False
# check overlap with previous entry
for x in i[1]:
if x in merged[-1][1]:# or tokenizer.convert_ids_to_tokens([encoder_input_ids[0][x]])[0][0] != "โ":
tomerge = True
break
# if first character is not a "โ"
if token[0] != "โ":
tomerge = True
if tomerge:
merged[-1][0] += i[0]
merged[-1][1] += i[1]
else:
merged.append(i)
else:
merged.append(i)
colordict = {}
ncolors = 0
for i in merged:
src_tok = [f"src_{x}" for x in i[0]]
trg_tok = [f"trg_{x}" for x in i[1]]
all_tok = src_tok + trg_tok
# see if any tokens in entry already have associated color
newcolor = None
for t in all_tok:
if t in colordict:
newcolor = colordict[t]
break
if not newcolor:
newcolor = ncolors
ncolors += 1
for t in all_tok:
if t not in colordict:
colordict[t] = newcolor
colors = generate_diverging_colors(ncolors, palette="Set2")
id_to_color = {i: c for i, c in enumerate(colors)}
for k, v in colordict.items():
colordict[k] = id_to_color[v]
tgthtml = []
for i, token in enumerate(decoder_input_ids[0]):
if f"src_{i}" in colordict:
label = f"src_{i}"
tgthtml.append(f"<span style='color: #{colordict[label]}'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
else:
tgthtml.append(f"<span style='color: --color-text-body'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
tgthtml = "".join(tgthtml)
tgthtml = tgthtml.replace("โ", " ")
tgthtml = f"<span style='font-size: 30px'>{tgthtml}</span>"
srchtml = []
for i, token in enumerate(encoder_input_ids[0]):
if skip_first_src and i == 0:
continue
if f"trg_{i}" in colordict:
label = f"trg_{i}"
srchtml.append(f"<span style='color: #{colordict[label]}'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
else:
srchtml.append(f"<span style='color: --color-text-body'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
srchtml = "".join(srchtml)
srchtml = srchtml.replace("โ", " ")
srchtml = f"<span style='font-size: 30px'>{srchtml}</span>"
return srchtml, tgthtml
def translate_english(input_text, include):
if not input_text:
return "", "", "", "", ""
inputs = [f"{val} {input_text}" for val in dialects.values()]
sy, lb, eg = "SYR" in include, "LEB" in include, "EGY" in include
# remove 2nd element if sy is false
if not eg:
inputs.pop()
if not lb:
inputs.pop()
if not sy:
inputs.pop()
input_tokens = tokenizer_en2ar(inputs, return_tensors="pt").input_ids
# print(input_tokens)
outputs = translator_en2ar.generate(input_tokens)
# print(outputs)
encoder_input_ids = input_tokens[0].unsqueeze(0)
decoder_input_ids = outputs[0].unsqueeze(0)
decoded = tokenizer_en2ar.batch_decode(outputs, skip_special_tokens=True)
# print(decoded)
pal_out = decoded[0]
sy_out = decoded[1] if sy else ""
lb_out = decoded[1 + sy] if lb else ""
eg_out = decoded[1 + sy + lb] if eg else ""
if "Colorize" in include:
html_outputs = translator_en2ar(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)
# set dynamic threshold
# print(input_tokens, input_tokens.shape)
if input_tokens.shape[1] < 10:
threshold = 0.4
elif input_tokens.shape[1] < 20:
threshold = 0.10
else:
threshold = 0.05
print("threshold", threshold)
srchtml, tgthtml = align_words(html_outputs, tokenizer_en2ar, encoder_input_ids, decoder_input_ids, threshold)
palhtml = f"{srchtml}<br><br><div style='direction: rtl'>{tgthtml}</div>"
else:
palhtml = f"<div style='font-size: 30px; direction: rtl'>{pal_out}</div>"
return palhtml, pal_out, sy_out, lb_out, eg_out
def translate_arabic(input_text, include=["Colorize"]):
if not input_text:
return ""
input_tokens = tokenizer_ar2en(input_text, return_tensors="pt").input_ids
# print(input_tokens)
outputs = translator_ar2en.generate(input_tokens)
# print(outputs)
encoder_input_ids = input_tokens[0].unsqueeze(0)
decoder_input_ids = outputs[0].unsqueeze(0)
decoded = tokenizer_en2ar.batch_decode(outputs, skip_special_tokens=True)
# print(decoded)
print(include)
if "Colorize" in include:
html_outputs = translator_ar2en(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)
# set dynamic threshold
# print(input_tokens, input_tokens.shape)
if input_tokens.shape[1] < 20:
threshold = 0.1
elif input_tokens.shape[1] < 30:
threshold = 0.01
else:
threshold = 0.05
print("threshold", threshold)
srchtml, tgthtml = align_words(html_outputs, tokenizer_ar2en, encoder_input_ids, decoder_input_ids, threshold, skip_first_src=False)
enhtml = f"<div style='direction: rtl'>{srchtml}</div><br><br><div>{tgthtml}</div>"
else:
enhtml = f"<div style='font-size: 30px;'>{decoded[0]}</div>"
return enhtml
def get_audio(input_text):
audio_config = speechsdk.audio.AudioOutputConfig(filename=f"{input_text}.wav")
speech_config.speech_synthesis_voice_name='ar-SY-AmanyNeural'
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(input_text).get()
return f"{input_text}.wav"
def get_transliteration(input_text, include=["Translit."]):
if "Translit." not in include:
return ""
result = transliterator([input_text])
return result[0]["translation_text"]
bla = """
"""
css = """
#liter textarea, #trans textarea { font-size: 25px;}
#trans textarea { direction: rtl; }
#check { border-style: none !important; }
:root {--button-secondary-background-focus: #2563eb !important;
--button-secondary-background-base: #2563eb !important;
--button-secondary-background-hover: linear-gradient(to bottom right, #0692e8, #5859c2);
--button-secondary-text-color-base: white !important;
--button-secondary-text-color-hover: white !important;
--button-secondary-background-focus: rgb(51 122 216 / 70%) !important;
--button-secondary-text-color-focus: white !important}
.dark {--button-secondary-background-base: #2563eb !important;
--button-secondary-background-focus: rgb(51 122 216 / 70%) !important;
--button-secondary-background-hover: linear-gradient(to bottom right, #0692e8, #5859c2)}
.feather-music { stroke: #2563eb; }
"""
def toggle_visibility(include):
outs = [gr.Textbox.update(visible=True)] * 4
if "Translit." not in include:
outs[0] = gr.Textbox.update(visible=False)
if "SYR" not in include:
outs[1] = gr.Textbox.update(visible=False)
if "LEB" not in include:
outs[2] = gr.Textbox.update(visible=False)
if "EGY" not in include:
outs[3] = gr.Textbox.update(visible=False)
return outs
with gr.Blocks(title = "Levantine Arabic Translator", css=css, theme="default") as demo:
gr.HTML("<h2><span style='color: #2563eb'>Levantine Arabic</span> Translator</h2>")
with gr.Tab('En > Ar'):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input", placeholder="Enter English text", lines=2)
gr.Examples(["I wanted to go to the store yesterday, but it rained", "How are you feeling today?"], input_text)
btn = gr.Button("Translate", label="Translate")
with gr.Row():
include = gr.CheckboxGroup(["Translit.", "SYR", "LEB", "EGY", "Colorize"],
label="Disable features to speed up translation",
value=["Translit.", "EGY", "Colorize"])
gr.Markdown("Built by [Guy Mor-Lan](mailto:guy.mor@mail.huji.ac.il). Pronunciation model is specifically tailored to urban Palestinian Arabic. Text-to-speech uses Microsoft Azure's API and may provide different result from the transliterated pronunciation.")
with gr.Column():
with gr.Box(label = "Palestinian"):
gr.Markdown("Palestinian")
with gr.Box():
pal_html = gr.HTML("<br>", visible=True, label="Palestinian", elem_id="main")
pal = gr.Textbox(lines=1, label="Palestinian", elem_id="trans", visible=False)
pal_translit = gr.Textbox(lines=1, label="Palestinian Pronunciation (Urban)", elem_id="liter")
sy = gr.Textbox(lines=1, label="Syrian", elem_id="trans", visible=False)
lb = gr.Textbox(lines=1, label="Lebanese", elem_id="trans", visible=False)
eg = gr.Textbox(lines=1, label="Egyptian", elem_id="trans")
# with gr.Row():
audio = gr.Audio(label="Audio - Palestinian", interactive=False)
audio_button = gr.Button("Get Audio", label="Click Here to Get Audio")
audio_button.click(get_audio, inputs=[pal], outputs=[audio])
btn.click(translate_english,inputs=[input_text, include], outputs=[pal_html, pal, sy, lb, eg], _js="function jump(x, y){document.getElementById('main').scrollIntoView(); return [x, y];}")
input_text.submit(translate_english, inputs=[input_text, include], outputs=[pal_html, pal, sy, lb, eg],scroll_to_output=True)
pal.change(get_transliteration, inputs=[pal, include], outputs=[pal_translit]);
include.change(toggle_visibility, inputs=[include], outputs=[pal_translit, sy, lb, eg])
with gr.Tab('Ar > En'):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input", placeholder="Enter Levantine Arabic text", lines=1, elem_id="trans")
gr.Examples(["ุฎูููุง ูุฏูุฑ ุนูู ู
ุทุนู
ุชุงูู", "ูุฏูุด ุญู ุงูุจูุฏูุฑุฉุ"], input_text)
btn = gr.Button("Translate", label="Translate")
gr.Markdown("Built by [Guy Mor-Lan](mailto:guy.mor@mail.huji.ac.il).")
with gr.Column():
with gr.Box(label = "English"):
gr.Markdown("English")
with gr.Box():
eng = gr.HTML("<br>", label="English", elem_id="main")
btn.click(translate_arabic,inputs=input_text, outputs=[eng])
with gr.Tab("Transliterate"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input", placeholder="Enter Levantine Arabic text", lines=1)
gr.Examples(["ุฎูููุง ูุฏูุฑ ุนูู ู
ุทุนู
ุชุงูู", "ูุฏูุด ุญู ุงูุจูุฏูุฑุฉุ"], input_text)
btn = gr.Button("Transliterate", label="Transliterate")
gr.Markdown("Built by [Guy Mor-Lan](mailto:guy.mor@mail.huji.ac.il)")
with gr.Column():
translit = gr.Textbox(label="Transliteration", lines=1, elem_id="liter")
btn.click(get_transliteration, inputs=input_text, outputs=[translit])
demo.launch() |