File size: 13,616 Bytes
3e25102
c1d1323
3e25102
 
c1d1323
 
3e25102
 
 
c1d1323
 
 
df677ba
 
3e25102
 
 
 
c1d1323
 
 
 
 
 
 
 
 
 
 
 
 
df677ba
c1d1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df677ba
c1d1323
 
 
 
 
 
 
 
 
 
 
dbacc9b
964b4e8
c1d1323
964b4e8
3e25102
dbacc9b
09e0776
dbacc9b
 
 
 
 
 
 
 
c1d1323
 
 
 
 
 
 
dbacc9b
c1d1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e25102
df677ba
964b4e8
 
 
df677ba
 
 
 
 
 
 
7da7e15
df677ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e25102
 
 
 
 
 
 
 
c1d1323
 
964b4e8
3e25102
 
 
 
c1d1323
 
3e25102
 
c1d1323
 
 
 
 
 
 
 
 
 
 
 
 
3e25102
 
c1d1323
 
 
 
09e0776
c1d1323
09e0776
c1d1323
09e0776
c1d1323
 
 
 
 
09e0776
c1d1323
7da7e15
 
c1d1323
 
7da7e15
dbacc9b
c1d1323
dbacc9b
2e03cd0
7da7e15
 
 
c1d1323
 
 
 
 
 
 
 
7da7e15
2e03cd0
 
 
 
fff6c5b
c1d1323
 
 
df677ba
c1d1323
dbacc9b
 
 
c1d1323
dbacc9b
 
 
df677ba
 
 
 
fff6c5b
df677ba
7da7e15
 
 
 
c1d1323
7da7e15
 
 
 
 
 
c1d1323
2e03cd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import gradio as gr
from transformers import pipeline, MarianMTModel, AutoTokenizer
import os
import azure.cognitiveservices.speech as speechsdk
import matplotlib.pyplot as plt
import numpy as np

dialects = {"Palestinian/Jordanian": "P", "Syrian": "S", "Lebanese": "L", "Egyptian": "E"}

# translator_en2ar = pipeline(task="translation", model="guymorlan/English2Dialect")
translator_en2ar = MarianMTModel.from_pretrained("guymorlan/English2Dialect", output_attentions=True)
tokenizer_en2ar = AutoTokenizer.from_pretrained("guymorlan/English2Dialect")
translator_ar2en = MarianMTModel.from_pretrained("guymorlan/Shami2English", output_attentions=True)
tokenizer_ar2en = AutoTokenizer.from_pretrained("guymorlan/Shami2English")
transliterator = pipeline(task="translation", model="guymorlan/DialectTransliterator")

speech_config = speechsdk.SpeechConfig(subscription=os.environ.get('SPEECH_KEY'), region=os.environ.get('SPEECH_REGION'))

def generate_diverging_colors(num_colors, palette='Set3'): # courtesy of ChatGPT
    # Generate a colormap with a specified number of colors
    cmap = plt.cm.get_cmap(palette, num_colors)

    # Get the RGB values of the colors in the colormap
    colors_rgb = cmap(np.arange(num_colors))

    # Convert the RGB values to hexadecimal color codes
    colors_hex = [format(int(color[0]*255)<<16|int(color[1]*255)<<8|int(color[2]*255), '06x') for color in colors_rgb]

    return colors_hex


def align_words(outputs, tokenizer, encoder_input_ids, decoder_input_ids, threshold=0.4, skip_first_src=True):
    alignment = []
    for i, tok in enumerate(outputs.cross_attentions[2][0][7]):
        alignment.append([[i], (tok > threshold).nonzero().squeeze(-1).tolist()])

    merged = []
    for i in alignment:
        token = tokenizer.convert_ids_to_tokens([decoder_input_ids[0][i[0]]])[0]
        if token not in tokenizer.convert_tokens_to_ids(["</s>", "<pad>", "<unk>"]):
            if merged:
                tomerge = False
                # check overlap with previous entry
                for x in i[1]:
                    if x in merged[-1][1]:# or tokenizer.convert_ids_to_tokens([encoder_input_ids[0][x]])[0][0] != "โ–": 
                        tomerge = True
                        break
                # if first character is not a "โ–"
                if  token[0] != "โ–":
                    tomerge = True
                if tomerge:
                    merged[-1][0] += i[0]
                    merged[-1][1] += i[1]
                else:
                    merged.append(i)
            else:
                merged.append(i)

    colordict = {}
    ncolors = 0
    for i in merged:
        src_tok = [f"src_{x}" for x in i[0]]
        trg_tok = [f"trg_{x}" for x in i[1]]
        all_tok = src_tok + trg_tok
        # see if any tokens in entry already have associated color
        newcolor = None
        for t in all_tok:
            if t in colordict:
                newcolor = colordict[t]
                break
        if not newcolor:
            newcolor = ncolors
            ncolors += 1
        for t in all_tok:
            if t not in colordict:
                colordict[t] = newcolor

    colors = generate_diverging_colors(ncolors, palette="Set2")
    id_to_color = {i: c for i, c in enumerate(colors)}
    for k, v in colordict.items():
        colordict[k] = id_to_color[v]


    tgthtml = []
    for i, token in enumerate(decoder_input_ids[0]):
        if f"src_{i}" in colordict:
            label = f"src_{i}"
            tgthtml.append(f"<span style='color: #{colordict[label]}'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
        else:
            tgthtml.append(f"<span style='color: --color-text-body'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
    tgthtml = "".join(tgthtml)
    tgthtml = tgthtml.replace("โ–", " ")
    tgthtml = f"<span style='font-size: 30px'>{tgthtml}</span>"

    srchtml = []
    for i, token in enumerate(encoder_input_ids[0]):
        if skip_first_src and i == 0:
            continue
        if f"trg_{i}" in colordict:
            label = f"trg_{i}"
            srchtml.append(f"<span style='color: #{colordict[label]}'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
        else:
            srchtml.append(f"<span style='color: --color-text-body'>{tokenizer.convert_ids_to_tokens([token])[0]}</span>")
    srchtml = "".join(srchtml)
    srchtml = srchtml.replace("โ–", " ")
    srchtml = f"<span style='font-size: 30px'>{srchtml}</span>"
    return srchtml, tgthtml

def translate_english(input_text, include):
    if not input_text:
        return "", "", "", "", ""

    inputs = [f"{val} {input_text}" for val in dialects.values()]

    sy, lb, eg = "SYR" in include, "LEB" in include, "EGY" in include
    # remove 2nd element if sy is false
    if not eg:
        inputs.pop()
    if not lb:
        inputs.pop()
    if not sy:
        inputs.pop()

    input_tokens = tokenizer_en2ar(inputs, return_tensors="pt").input_ids
    # print(input_tokens)
    outputs =  translator_en2ar.generate(input_tokens)
    # print(outputs)

    encoder_input_ids = input_tokens[0].unsqueeze(0)
    decoder_input_ids = outputs[0].unsqueeze(0)


    decoded = tokenizer_en2ar.batch_decode(outputs, skip_special_tokens=True)
    # print(decoded)
    pal_out = decoded[0]
    sy_out = decoded[1] if sy else ""
    lb_out = decoded[1 + sy] if lb else ""
    eg_out = decoded[1 + sy + lb] if eg else ""

    if "Colorize" in include:
        html_outputs = translator_en2ar(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)

        # set dynamic threshold
        # print(input_tokens, input_tokens.shape)
        if input_tokens.shape[1] < 10:
            threshold = 0.4
        elif input_tokens.shape[1] < 20:
            threshold = 0.10
        else:
            threshold = 0.05

        print("threshold", threshold)

        srchtml, tgthtml = align_words(html_outputs, tokenizer_en2ar, encoder_input_ids, decoder_input_ids, threshold)
        palhtml = f"{srchtml}<br><br><div style='direction: rtl'>{tgthtml}</div>"
    else:
        palhtml = f"<div style='font-size: 30px; direction: rtl'>{pal_out}</div>"


    return palhtml, pal_out, sy_out, lb_out, eg_out

def translate_arabic(input_text, include=["Colorize"]):
    if not input_text:
        return ""

    input_tokens = tokenizer_ar2en(input_text, return_tensors="pt").input_ids
    # print(input_tokens)
    outputs =  translator_ar2en.generate(input_tokens)
    # print(outputs)

    encoder_input_ids = input_tokens[0].unsqueeze(0)
    decoder_input_ids = outputs[0].unsqueeze(0)

    decoded = tokenizer_en2ar.batch_decode(outputs, skip_special_tokens=True)
    # print(decoded)

    print(include)
    if "Colorize" in include:
        html_outputs = translator_ar2en(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)

        # set dynamic threshold
        # print(input_tokens, input_tokens.shape)
        if input_tokens.shape[1] < 20:
            threshold = 0.1
        elif input_tokens.shape[1] < 30:
            threshold = 0.01
        else:
            threshold = 0.05

        print("threshold", threshold)

        srchtml, tgthtml = align_words(html_outputs, tokenizer_ar2en, encoder_input_ids, decoder_input_ids, threshold, skip_first_src=False)
        enhtml = f"<div style='direction: rtl'>{srchtml}</div><br><br><div>{tgthtml}</div>"
    else:
        enhtml = f"<div style='font-size: 30px;'>{decoded[0]}</div>"

    return enhtml

def get_audio(input_text):
    audio_config = speechsdk.audio.AudioOutputConfig(filename=f"{input_text}.wav")
    speech_config.speech_synthesis_voice_name='ar-SY-AmanyNeural'
    speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
    speech_synthesis_result = speech_synthesizer.speak_text_async(input_text).get()
    return f"{input_text}.wav"

def get_transliteration(input_text, include=["Translit."]):
    if "Translit." not in include:
        return ""
    result = transliterator([input_text])
    return result[0]["translation_text"]


bla = """
"""
css = """
#liter textarea, #trans textarea { font-size: 25px;}
#trans textarea { direction: rtl; }
#check { border-style: none !important; }
:root {--button-secondary-background-focus: #2563eb !important;
       --button-secondary-background-base: #2563eb !important;
       --button-secondary-background-hover: linear-gradient(to bottom right, #0692e8, #5859c2);
       --button-secondary-text-color-base: white !important;
       --button-secondary-text-color-hover: white !important;
       --button-secondary-background-focus: rgb(51 122 216 / 70%) !important;
       --button-secondary-text-color-focus: white !important}
.dark {--button-secondary-background-base: #2563eb !important;
       --button-secondary-background-focus: rgb(51 122 216 / 70%) !important;
       --button-secondary-background-hover: linear-gradient(to bottom right, #0692e8, #5859c2)}
.feather-music { stroke: #2563eb; }
"""

def toggle_visibility(include):
    outs = [gr.Textbox.update(visible=True)] * 4
    if "Translit." not in include:
        outs[0] = gr.Textbox.update(visible=False)
    if "SYR" not in include:
        outs[1] = gr.Textbox.update(visible=False)
    if "LEB" not in include:
        outs[2] = gr.Textbox.update(visible=False)
    if "EGY" not in include:
        outs[3] = gr.Textbox.update(visible=False)

    return outs

with gr.Blocks(title = "Levantine Arabic Translator", css=css, theme="default") as demo:
    gr.HTML("<h2><span style='color: #2563eb'>Levantine Arabic</span> Translator</h2>")
    with gr.Tab('En > Ar'):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(label="Input", placeholder="Enter English text", lines=2)
                gr.Examples(["I wanted to go to the store yesterday, but it rained", "How are you feeling today?"], input_text)
                btn = gr.Button("Translate", label="Translate")
                with gr.Row():
                    include = gr.CheckboxGroup(["Translit.", "SYR", "LEB", "EGY", "Colorize"], 
                                               label="Disable features to speed up translation",
                                               value=["Translit.", "EGY", "Colorize"])
                gr.Markdown("Built by [Guy Mor-Lan](mailto:guy.mor@mail.huji.ac.il). Pronunciation model is specifically tailored to urban Palestinian Arabic. Text-to-speech uses Microsoft Azure's API and may provide different result from the transliterated pronunciation.")

            with gr.Column():
                with gr.Box(label = "Palestinian"):
                    gr.Markdown("Palestinian")
                    with gr.Box():
                        pal_html = gr.HTML("<br>", visible=True, label="Palestinian", elem_id="main")
                pal = gr.Textbox(lines=1, label="Palestinian", elem_id="trans", visible=False)
                pal_translit = gr.Textbox(lines=1, label="Palestinian Pronunciation (Urban)", elem_id="liter")
                sy = gr.Textbox(lines=1, label="Syrian", elem_id="trans", visible=False)
                lb = gr.Textbox(lines=1, label="Lebanese", elem_id="trans", visible=False)
                eg = gr.Textbox(lines=1, label="Egyptian", elem_id="trans")
                # with gr.Row():
                audio = gr.Audio(label="Audio - Palestinian", interactive=False)
                audio_button = gr.Button("Get Audio", label="Click Here to Get Audio")
                audio_button.click(get_audio, inputs=[pal], outputs=[audio])
        btn.click(translate_english,inputs=[input_text, include], outputs=[pal_html, pal, sy, lb, eg], api_name="en2ar", _js="function jump(x, y){document.getElementById('main').scrollIntoView(); return [x, y];}")
        input_text.submit(translate_english, inputs=[input_text, include], outputs=[pal_html, pal, sy, lb, eg],scroll_to_output=True)
        pal.change(get_transliteration, inputs=[pal, include], outputs=[pal_translit]);
        include.change(toggle_visibility, inputs=[include], outputs=[pal_translit, sy, lb, eg])

    with gr.Tab('Ar > En'):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(label="Input", placeholder="Enter Levantine Arabic text", lines=1, elem_id="trans")
                gr.Examples(["ุฎู„ูŠู†ุง ู†ุฏูˆุฑ ุนู„ู‰ ู…ุทุนู… ุชุงู†ูŠ", "ู‚ุฏูŠุด ุญู‚ ุงู„ุจู†ุฏูˆุฑุฉุŸ"], input_text)
                btn = gr.Button("Translate", label="Translate")
                gr.Markdown("Built by [Guy Mor-Lan](mailto:guy.mor@mail.huji.ac.il).")
            with gr.Column():
                with gr.Box(label = "English"):
                    gr.Markdown("English")
                    with gr.Box():
                        eng = gr.HTML("<br>", label="English", elem_id="main")
        btn.click(translate_arabic,inputs=input_text, outputs=[eng], api_name = "ar2en")

    with gr.Tab("Transliterate"):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(label="Input", placeholder="Enter Levantine Arabic text", lines=1)
                gr.Examples(["ุฎู„ูŠู†ุง ู†ุฏูˆุฑ ุนู„ู‰ ู…ุทุนู… ุชุงู†ูŠ", "ู‚ุฏูŠุด ุญู‚ ุงู„ุจู†ุฏูˆุฑุฉุŸ"], input_text)
                btn = gr.Button("Transliterate", label="Transliterate")
                gr.Markdown("Built by [Guy Mor-Lan](mailto:guy.mor@mail.huji.ac.il)")
            with gr.Column():
                translit = gr.Textbox(label="Transliteration", lines=1, elem_id="liter")
        btn.click(get_transliteration, inputs=input_text, outputs=[translit])


demo.launch()