File size: 10,990 Bytes
515506a e227943 515506a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import os
import pandas as pd
import numpy as np
import streamlit as st
import re
import pickle
def preprocess(q):
q=str(q).lower().strip()
q=q.replace('%',' percent ')
q=q.replace('@',' at ')
q=q.replace('$',' dollar ')
q=q.replace('[math]','')
q=q.replace(',000,000,000 ','b ')
q=q.replace(',000,000 ','m ')
q=q.replace(',000 ','k ')
import re
q=re.sub(r'([0-9]+)000000000',r'\1b',q)
q=re.sub(r'([0-9]+)000000',r'\1m',q)
q=re.sub(r'([0-9]+)000',r'\1k',q)
contractions = {
"ain't": "am not",
"aren't": "are not",
"can't": "can not",
"can't've": "can not have",
"'cause": "because",
"could've": "could have",
"couldn't": "could not",
"couldn't've": "could not have",
"didn't": "did not",
"doesn't": "does not",
"don't": "do not",
"hadn't": "had not",
"hadn't've": "had not have",
"hasn't": "has not",
"haven't": "have not",
"he'd": "he would",
"he'd've": "he would have",
"he'll": "he will",
"he'll've": "he will have",
"he's": "he is",
"how'd": "how did",
"how'd'y": "how do you",
"how'll": "how will",
"how's": "how is",
"i'd": "i would",
"i'd've": "i would have",
"i'll": "i will",
"i'll've": "i will have",
"i'm": "i am",
"i've": "i have",
"isn't": "is not",
"it'd": "it would",
"it'd've": "it would have",
"it'll": "it will",
"it'll've": "it will have",
"it's": "it is",
"let's": "let us",
"ma'am": "madam",
"mayn't": "may not",
"might've": "might have",
"mightn't": "might not",
"mightn't've": "might not have",
"must've": "must have",
"mustn't": "must not",
"mustn't've": "must not have",
"needn't": "need not",
"needn't've": "need not have",
"o'clock": "of the clock",
"oughtn't": "ought not",
"oughtn't've": "ought not have",
"shan't": "shall not",
"sha'n't": "shall not",
"shan't've": "shall not have",
"she'd": "she would",
"she'd've": "she would have",
"she'll": "she will",
"she'll've": "she will have",
"she's": "she is",
"should've": "should have",
"shouldn't": "should not",
"shouldn't've": "should not have",
"so've": "so have",
"so's": "so as",
"that'd": "that would",
"that'd've": "that would have",
"that's": "that is",
"there'd": "there would",
"there'd've": "there would have",
"there's": "there is",
"they'd": "they would",
"they'd've": "they would have",
"they'll": "they will",
"they'll've": "they will have",
"they're": "they are",
"they've": "they have",
"to've": "to have",
"wasn't": "was not",
"we'd": "we would",
"we'd've": "we would have",
"we'll": "we will",
"we'll've": "we will have",
"we're": "we are",
"we've": "we have",
"weren't": "were not",
"what'll": "what will",
"what'll've": "what will have",
"what're": "what are",
"what's": "what is",
"what've": "what have",
"when's": "when is",
"when've": "when have",
"where'd": "where did",
"where's": "where is",
"where've": "where have",
"who'll": "who will",
"who'll've": "who will have",
"who's": "who is",
"who've": "who have",
"why's": "why is",
"why've": "why have",
"will've": "will have",
"won't": "will not",
"won't've": "will not have",
"would've": "would have",
"wouldn't": "would not",
"wouldn't've": "would not have",
"y'all": "you all",
"y'all'd": "you all would",
"y'all'd've": "you all would have",
"y'all're": "you all are",
"y'all've": "you all have",
"you'd": "you would",
"you'd've": "you would have",
"you'll": "you will",
"you'll've": "you will have",
"you're": "you are",
"you've": "you have"
}
q_decontracted = []
for word in q.split():
if word in contractions:
word = contractions[word]
q_decontracted.append(word)
q = ' '.join(q_decontracted)
q = q.replace("'ve", " have")
q = q.replace("n't", " not")
q = q.replace("'re", " are")
q = q.replace("'ll", " will")
q=re.sub(re.compile('<.*?>'),'',q)
import string
q=q.translate(str.maketrans('', '', string.punctuation))
return q
def common_words(row):
w1=set(map(lambda word: word.lower().strip(),row['question1'].split(" ")))
w2=set(map(lambda word: word.lower().strip(),row['question2'].split(" ")))
return len(w1 & w2)
def total_words(row):
w1=set(map(lambda word: word.lower().strip(),row['question1'].split(" ")))
w2=set(map(lambda word: word.lower().strip(),row['question2'].split(" ")))
return len(w1) + len(w2)
import nltk
nltk.download("stopwords")
from nltk.corpus import stopwords
def fetch_token_features(row):
q1 = row['question1']
q2 = row['question2']
SAFE_DIV = 0.0001
STOP_WORDS = stopwords.words("english")
token_features = [0.0]*8
# Converting the Sentence into Tokens:
q1_tokens = q1.split()
q2_tokens = q2.split()
if len(q1_tokens) == 0 or len(q2_tokens) == 0:
return token_features
# Get the non-stopwords in Questions
q1_words = set([word for word in q1_tokens if word not in STOP_WORDS])
q2_words = set([word for word in q2_tokens if word not in STOP_WORDS])
#Get the stopwords in Questions
q1_stops = set([word for word in q1_tokens if word in STOP_WORDS])
q2_stops = set([word for word in q2_tokens if word in STOP_WORDS])
# Get the common non-stopwords from Question pair
common_word_count = len(q1_words.intersection(q2_words))
# Get the common stopwords from Question pair
common_stop_count = len(q1_stops.intersection(q2_stops))
# Get the common Tokens from Question pair
common_token_count = len(set(q1_tokens).intersection(set(q2_tokens)))
token_features[0] = common_word_count / (min(len(q1_words), len(q2_words)) + SAFE_DIV)
token_features[1] = common_word_count / (max(len(q1_words), len(q2_words)) + SAFE_DIV)
token_features[2] = common_stop_count / (min(len(q1_stops), len(q2_stops)) + SAFE_DIV)
token_features[3] = common_stop_count / (max(len(q1_stops), len(q2_stops)) + SAFE_DIV)
token_features[4] = common_token_count / (min(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)
token_features[5] = common_token_count / (max(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)
# Last word of both question is same or not
token_features[6] = int(q1_tokens[-1] == q2_tokens[-1])
# First word of both question is same or not
token_features[7] = int(q1_tokens[0] == q2_tokens[0])
return token_features
import distance
def fetch_length_features(row):
q1 = row['question1']
q2 = row['question2']
length_features = [0.0]*3
# Converting the Sentence into Tokens:
q1_tokens = q1.split()
q2_tokens = q2.split()
if len(q1_tokens) == 0 or len(q2_tokens) == 0:
return length_features
# Absolute length features
length_features[0] = abs(len(q1_tokens) - len(q2_tokens))
# Average Token Length of both Questions
length_features[1] = (len(q1_tokens) + len(q2_tokens)) / 2
# Find the longest common substring
strs = list(distance.lcsubstrings(q1, q2))
if strs:
length_features[2] = len(strs[0]) / (min(len(q1), len(q2)) + 1)
else:
length_features[2] = 0.0
return length_features
# Fuzzy Features
from fuzzywuzzy import fuzz
def fetch_fuzzy_features(row):
q1 = row['question1']
q2 = row['question2']
fuzzy_features = [0.0]*4
# fuzz_ratio
fuzzy_features[0] = fuzz.QRatio(q1, q2)
# fuzz_partial_ratio
fuzzy_features[1] = fuzz.partial_ratio(q1, q2)
# token_sort_ratio
fuzzy_features[2] = fuzz.token_sort_ratio(q1, q2)
# token_set_ratio
fuzzy_features[3] = fuzz.token_set_ratio(q1, q2)
return fuzzy_features
def all_prep(df):
df['q1_len']=df['question1'].str.len()
df['q2_len']=df['question2'].str.len()
df['q1_num_words']=df['question1'].apply(lambda row: len(row.split(" ")))
df['q2_num_words']=df['question2'].apply(lambda row: len(row.split(" ")))
df['word_common']=df.apply(common_words,axis=1)
df['word_total']=df.apply(total_words,axis=1)
df['word_share']=round(df['word_common']/df['word_total'],2)
token_features = df.apply(fetch_token_features, axis=1)
df["cwc_min"] = list(map(lambda x: x[0], token_features))
df["cwc_max"] = list(map(lambda x: x[1], token_features))
df["csc_min"] = list(map(lambda x: x[2], token_features))
df["csc_max"] = list(map(lambda x: x[3], token_features))
df["ctc_min"] = list(map(lambda x: x[4], token_features))
df["ctc_max"] = list(map(lambda x: x[5], token_features))
df["last_word_eq"] = list(map(lambda x: x[6], token_features))
df["first_word_eq"] = list(map(lambda x: x[7], token_features))
length_features = df.apply(fetch_length_features, axis=1)
df['abs_len_diff'] = list(map(lambda x: x[0], length_features))
df['mean_len'] = list(map(lambda x: x[1], length_features))
df['longest_substr_ratio'] = list(map(lambda x: x[2], length_features))
fuzzy_features = df.apply(fetch_fuzzy_features, axis=1)
df['fuzz_ratio'] = list(map(lambda x: x[0], fuzzy_features))
df['fuzz_partial_ratio'] = list(map(lambda x: x[1], fuzzy_features))
df['token_sort_ratio'] = list(map(lambda x: x[2], fuzzy_features))
df['token_set_ratio'] = list(map(lambda x: x[3], fuzzy_features))
ndf2=df.drop(columns=['question1','question2'])
import pickle
import numpy as np
with open("BOW.pkl", 'rb') as file:
cv = pickle.load(file)
questions=list(df['question1'])+list(df['question2'])
q1_arr,q2_arr=np.vsplit(cv.transform(questions).toarray(),2)
temp_df=pd.concat([pd.DataFrame(q1_arr,index=ndf2.index),pd.DataFrame(q2_arr,index=ndf2.index)],axis=1)
temp_df=pd.concat([ndf2,temp_df],axis=1)
temp_df.columns = temp_df.columns.astype(str)
return temp_df
def clear_text():
st.session_state["text1"] = ""
st.session_state["text2"] = ""
def main():
st.title('Duplicate Question Detection (Approach 1)')
st.write("Feature Engineering, BOW , Random Forest")
q1 = st.text_input("Enter Question1", key="text1")
q2 = st.text_input("Enter Question2", key="text2")
data=[]
df = pd.DataFrame(data)
df['question1']=[preprocess(q1)]
df['question2']=[preprocess(q2)]
with open("RF.pkl", 'rb') as file:
rf = pickle.load(file)
if st.button('Find'):
z=rf.predict(all_prep(df))[0]
if z==1:
st.success("Duplicate")
else:
st.success("Not Duplicate")
st.button("Clear", on_click=clear_text)
if __name__=='__main__':
main()
|