File size: 1,600 Bytes
e4eb5c5
944dedf
 
 
 
4492d6d
19be65d
 
4eb15f6
944dedf
8ce2dae
19be65d
7e5c84b
 
944dedf
 
f6a94c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944dedf
1782e10
 
 
 
 
f6a94c1
 
1782e10
 
f6a94c1
f845b05
944dedf
f6a94c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import gradio as gr
import wave
import numpy as np
from io import BytesIO
from huggingface_hub import hf_hub_download
from piper import PiperVoice 
from transformers import pipeline


def synthesize_speech(text):


    model_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro", filename="fa_IR-gyro-meduim.onnx")
    config_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro/", filename="fa_IR-gyro-meduim.onnx.json")
    voice = PiperVoice.load(model_path, config_path)

    # Create an in-memory buffer for the WAV file
    buffer = BytesIO()
    with wave.open(buffer, 'wb') as wav_file:
        wav_file.setframerate(voice.config.sample_rate)
        wav_file.setsampwidth(2)  # 16-bit
        wav_file.setnchannels(1)  # mono

        # Synthesize speech
        voice.synthesize(text, wav_file)

    # Convert buffer to NumPy array for Gradio output
    buffer.seek(0)
    audio_data = np.frombuffer(buffer.read(), dtype=np.int16)

    return audio_data.tobytes(), None

# Using Gradio Blocks
with gr.Blocks(theme=gr.themes.Base()) as blocks:
    gr.Markdown("# Text to Speech Synthesizer")
    gr.Markdown("Enter text to synthesize it into speech using PiperVoice.")
    input_text = gr.Textbox(label="Input Text")
    output_audio = gr.Audio(label="Synthesized Speech", type="numpy")
    output_text = gr.Textbox(label="Output Text", visible=False)  # This is the new text output component
    submit_button = gr.Button("Synthesize")

    submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio, output_text])

# Run the app
blocks.launch()