Spaces:
Running
Running
import gradio as gr | |
import wave | |
import numpy as np | |
from io import BytesIO | |
from huggingface_hub import hf_hub_download | |
from piper import PiperVoice | |
from transformers import pipeline | |
# Load the NSFW classifier model | |
nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier") | |
def synthesize_speech(text): | |
# Check for NSFW content | |
nsfw_result = nsfw_detector(text) | |
if nsfw_result[0]['label'] == 'NSFW': | |
yield "NSFW content detected. Cannot process." | |
return | |
model_path = hf_hub_download(repo_id="aigmixer/speaker_00", filename="speaker_00_model.onnx") | |
config_path = hf_hub_download(repo_id="aigmixer/speaker_00", filename="speaker_00_model.onnx.json") | |
voice = PiperVoice.load(model_path, config_path) | |
# Synthesize speech and stream audio | |
for audio_chunk in voice.synthesize(text, chunk_size=2048): | |
yield audio_chunk.tobytes() | |
# Using Gradio Blocks | |
with gr.Blocks(theme=gr.themes.Base()) as blocks: | |
gr.Markdown("# Text to Speech Synthesizer") | |
gr.Markdown("Enter text to synthesize it into speech using PiperVoice.") | |
input_text = gr.Textbox(label="Input Text") | |
output_audio = gr.Audio(label="Synthesized Speech", type="numpy", streaming=True) | |
submit_button = gr.Button("Synthesize") | |
submit_button.click(synthesize_speech, inputs=input_text, outputs=output_audio) | |
# Run the app | |
blocks.launch() | |