Spaces:
Running
Running
import gradio as gr | |
import wave | |
import numpy as np | |
from io import BytesIO | |
from huggingface_hub import hf_hub_download | |
from piper import PiperVoice # Adjust import as per your project structure | |
#file_path = hf_hub_download("rhasspy/piper-voices", "en_GB-alan-medium.onnx") | |
def synthesize_speech(text): | |
# Load the PiperVoice model and configuration | |
# model_path = "en_GB-alan-medium.onnx" # this is for loading local model | |
# config_path = "en_GB-alan-medium.onnx.json" # for loading local json | |
model_path = hf_hub_download(repo_id="rhasspy/piper-voices", filename="en/en_GB/alan/medium/en_GB-alan-medium.onnx") | |
config_path = hf_hub_download(repo_id="rhasspy/piper-voices", filename="en/en_GB/alan/medium/en_GB-alan-medium.onnx.json") | |
voice = PiperVoice.load(model_path, config_path) | |
# Create an in-memory buffer for the WAV file | |
buffer = BytesIO() | |
with wave.open(buffer, 'wb') as wav_file: | |
wav_file.setframerate(voice.config.sample_rate) | |
wav_file.setsampwidth(2) # 16-bit | |
wav_file.setnchannels(1) # mono | |
# Synthesize speech | |
voice.synthesize(text, wav_file) | |
# Convert buffer to NumPy array for Gradio output | |
buffer.seek(0) | |
audio_data = np.frombuffer(buffer.read(), dtype=np.int16) | |
return audio_data.tobytes() | |
# Create a Gradio interface with labels | |
iface = gr.Interface( | |
fn=synthesize_speech, | |
inputs=gr.Textbox(label="Input Text"), | |
outputs=[gr.Audio(label="Synthesized Speech")], | |
title="Text to Speech Synthesizer", | |
description="Enter text to synthesize it into speech using PiperVoice.", | |
allow_flagging="never" | |
) | |
# Run the app | |
iface.launch() | |