Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,43 @@ from io import BytesIO
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from piper import PiperVoice
|
7 |
from transformers import pipeline
|
8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def synthesize_speech(text):
|
11 |
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from piper import PiperVoice
|
7 |
from transformers import pipeline
|
8 |
+
import hazm
|
9 |
+
import typing
|
10 |
+
|
11 |
+
normalizer = hazm.Normalizer()
|
12 |
+
sent_tokenizer = hazm.SentenceTokenizer()
|
13 |
+
word_tokenizer = hazm.WordTokenizer()
|
14 |
+
|
15 |
+
tagger = hazm.POSTagger(
|
16 |
+
model=str("gyroing/PersianTextCorrection_Hazm/pos_tagger.model")
|
17 |
+
)
|
18 |
+
|
19 |
+
def preprocess_text(text: str) -> typing.List[typing.List[str]]:
|
20 |
+
"""Split/normalize text into sentences/words with hazm"""
|
21 |
+
text = normalizer.normalize(text)
|
22 |
+
processed_sentences = []
|
23 |
+
|
24 |
+
for sentence in sent_tokenizer.tokenize(text):
|
25 |
+
words = word_tokenizer.tokenize(sentence)
|
26 |
+
processed_words = fix_words(words)
|
27 |
+
processed_sentences.append(" ".join(processed_words))
|
28 |
+
|
29 |
+
return " ".join(processed_sentences)
|
30 |
+
|
31 |
+
def fix_words(words: typing.List[str]) -> typing.List[str]:
|
32 |
+
fixed_words = []
|
33 |
+
|
34 |
+
for word, pos in tagger.tag(words):
|
35 |
+
if pos[-1] == "Z":
|
36 |
+
if word[-1] != "ِ":
|
37 |
+
if (word[-1] == "ه") and (word[-2] != "ا"):
|
38 |
+
word += "ی"
|
39 |
+
word += "ِ"
|
40 |
+
|
41 |
+
|
42 |
+
fixed_words.append(word)
|
43 |
+
|
44 |
+
return fixed_words
|
45 |
|
46 |
def synthesize_speech(text):
|
47 |
|