File size: 15,594 Bytes
b596e22
ab3d7d0
471e971
ab3d7d0
39b759d
ab3d7d0
 
 
 
 
 
39b759d
 
 
6c5150b
 
 
73b2bf3
 
6c5150b
 
471e971
6c5150b
80d1b7a
 
2d6f1c5
80d1b7a
 
 
 
 
 
bcfef20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c5150b
 
 
ab3d7d0
 
 
 
 
 
 
 
 
 
6c5150b
ab3d7d0
 
 
 
 
 
 
 
6c5150b
ab3d7d0
 
 
 
 
 
 
 
 
 
 
 
6c5150b
ab3d7d0
6c5150b
 
7826ae6
6c5150b
 
 
 
84ce9df
7826ae6
 
ab3d7d0
6c5150b
 
ab3d7d0
6c5150b
7826ae6
ab3d7d0
 
 
 
 
 
 
da76dba
 
 
 
 
6c5150b
 
84ce9df
 
 
e809d4e
7826ae6
 
 
e809d4e
 
 
 
 
 
 
471e971
 
e809d4e
 
 
471e971
 
e809d4e
 
 
 
 
 
 
d6bfd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e809d4e
 
 
 
 
 
7826ae6
e809d4e
6c5150b
 
 
 
84ce9df
6c5150b
7826ae6
ab3d7d0
6c5150b
 
ab3d7d0
6c5150b
7826ae6
ab3d7d0
 
 
 
 
 
 
 
da76dba
e809d4e
 
 
 
7826ae6
e809d4e
 
7826ae6
e809d4e
da76dba
 
 
 
 
d259dc9
 
 
 
 
 
e809d4e
d259dc9
e809d4e
 
471e971
e809d4e
 
 
 
 
 
471e971
d259dc9
d6bfd67
e809d4e
d6bfd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e809d4e
 
 
 
 
d259dc9
e809d4e
7826ae6
e809d4e
471e971
e809d4e
7826ae6
1757eeb
bcfef20
 
 
 
 
 
 
 
 
 
471e971
 
bcfef20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e809d4e
6c5150b
 
 
 
 
da76dba
 
6c5150b
bcfef20
 
 
 
 
 
80d1b7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c5150b
 
 
 
 
ab3d7d0
6c5150b
e809d4e
80d1b7a
 
 
 
 
bcfef20
80d1b7a
 
 
 
 
 
 
 
 
d259dc9
 
 
ab3d7d0
d259dc9
 
80d1b7a
1757eeb
 
e809d4e
 
 
 
 
84ce9df
e809d4e
 
 
 
 
 
 
 
 
 
d6bfd67
e809d4e
 
 
 
84ce9df
 
 
 
 
 
 
 
e809d4e
5099c24
bcfef20
 
 
 
 
 
 
 
 
 
 
 
471e971
 
1757eeb
5099c24
471e971
 
 
 
6c5150b
 
 
 
 
 
84ce9df
6c5150b
 
ab3d7d0
6c5150b
7826ae6
1757eeb
 
 
e809d4e
6c5150b
 
 
 
 
84ce9df
7826ae6
 
ab3d7d0
6c5150b
7826ae6
471e971
 
 
 
 
7826ae6
80d1b7a
 
123a59c
 
 
80d1b7a
 
5099c24
 
2f6e568
bcfef20
2f6e568
2d2df74
5099c24
 
 
92754e8
80d1b7a
 
5099c24
471e971
ab3d7d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import threading
import os

# caching the mode 
model_cache = {}
tokenizer_cache = {}
model_lock = threading.Lock()

from huggingface_hub import login
hf_token = os.environ.get('hf_token', None)


# Define the models and their paths
model_paths = {
    "H2OVL-Mississippi-2B":"h2oai/h2ovl-mississippi-2b",
    "H2OVL-Mississippi-0.8B":"h2oai/h2ovl-mississippi-800m",
    # Add more models as needed
}


example_prompts = [
    "Read the text and provide word by word ocr for the document. <doc>",
    "Read the text on the image",
    "Extract the text from the image.",
    "Extract the text from the image and fill the following json {'license_number':'',\n'full_name':'',\n'date_of_birth':'',\n'address':'',\n'issue_date':'',\n'expiration_date':'',\n}",
    "Please extract the following fields, and return the result in JSON format: supplier_name, supplier_address, customer_name, customer_address, invoice_number, invoice_total_amount, invoice_tax_amount",     
]


# Function to handle task type logic
def handle_task_type(task_type, model_name):
    max_new_tokens = 1024  # Default value
    if task_type == "OCR":
        max_new_tokens = 3072  # Adjust for OCR
    return max_new_tokens

# Function to handle task type logic and default question
def handle_task_type_and_prompt(task_type, model_name):
    max_new_tokens = handle_task_type(task_type, model_name)
    default_question = example_prompts[0] if task_type == "OCR" else None
    return max_new_tokens, default_question

def update_task_type_on_model_change(model_name):
    # Set default task type and max_new_tokens based on the model
    if '2b' in model_name.lower():
        return "Document extractor", handle_task_type("Document extractor", model_name)
    elif '0.8b' in model_name.lower():
        return "OCR", handle_task_type("OCR", model_name)
    else:
        return "Chat", handle_task_type("Chat", model_name)


def load_model_and_set_image_function(model_name):
    # Get the model path from the model_paths dictionary
    model_path = model_paths[model_name]
    
    
    with model_lock:
        if model_name in model_cache:
            # model is already loaded; retrieve it from the cache
            print(f"Model {model_name} is already loaded. Retrieving from cache.")
            
        else:
            # load the model and tokenizer
            print(f"Loading model {model_name}...")

            model = AutoModel.from_pretrained(
                model_path,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                trust_remote_code=True,
                use_auth_token=hf_token,
                # device_map="auto"
            ).eval().cuda()

            tokenizer = AutoTokenizer.from_pretrained(
                model_path,
                trust_remote_code=True,
                use_fast=False,
                use_auth_token=hf_token
            )
            
            # add the model and tokenizer to the cache
            model_cache[model_name] = model
            tokenizer_cache[model_name] = tokenizer
            print(f"Model {model_name} loaded successfully.")
            

    return model_name
    

def inference(image_input, 
              user_message,
              temperature, 
              top_p, 
              max_new_tokens, 
              tile_num,
              chatbot,
              state, 
              model_name):
    
    # Check if model_state is None
    if model_name is None:
        chatbot.append(("System", "Please select a model to start the conversation."))
        return chatbot, state, ""   
    
    with model_lock:
        if model_name not in model_cache:
            chatbot.append(("System", "Model not loaded. Please wait for the model to load."))
            return chatbot, state, ""
        model = model_cache[model_name]
        tokenizer = tokenizer_cache[model_name]

    # Check for empty or invalid user message
    if not user_message or user_message.strip() == '' or user_message.lower() == 'system':
        chatbot.append(("System", "Please enter a valid message to continue the conversation."))
        return chatbot, state, ""
    
    
    # if image is provided, store it in image_state:
    if chatbot is None:
        chatbot = []
        
    if image_input is None:
        chatbot.append(("System", "Please provide an image to start the conversation."))
        return chatbot, state, ""
        
    # Initialize history (state) if it's None
    if state is None:
        state = None  # model.chat function handles None as empty history        

    # Append user message to chatbot
    chatbot.append((user_message, None))

    # Set generation config
    do_sample = (float(temperature) != 0.0)    


    generation_config = dict(
        num_beams=1,
        max_new_tokens=int(max_new_tokens),
        do_sample=do_sample,
        temperature= float(temperature),
        top_p= float(top_p),
    )

    # Call model.chat with history
    if '2b' in model_name.lower():
        response_text, new_state = model.chat(
            tokenizer,
            image_input,
            user_message,
            max_tiles = int(tile_num),
            generation_config=generation_config,
            history=state,
            return_history=True
        )
        

    if '0.8b' in model_name.lower():
        response_text, new_state = model.ocr(
            tokenizer,
            image_input,
            user_message,
            max_tiles = int(tile_num),
            generation_config=generation_config,
            history=state,
            return_history=True
        )
    
    # update the satet with new_state
    state = new_state
    # Update chatbot with the model's response
    chatbot[-1] = (user_message, response_text)    
    
    return chatbot, state, ""

def regenerate_response(chatbot, 
                        temperature, 
                        top_p, 
                        max_new_tokens, 
                        tile_num,
                        state, 
                        image_input,
                        model_name):
    
    # Check if model_state is None
    if model_name is None:
        chatbot.append(("System", "Please select a model to start the conversation."))
        return chatbot, state
    
    
    with model_lock:
        if model_name not in model_cache:
            chatbot.append(("System", "Model not loaded. Please wait for the model to load."))
            return chatbot, state
        model = model_cache[model_name]
        tokenizer = tokenizer_cache[model_name]
        
    # Check if there is a previous user message
    if chatbot is None or len(chatbot) == 0:
        chatbot = []
        chatbot.append(("System", "Nothing to regenerate. Please start a conversation first."))
        return chatbot, state, 
    
    # Get the last user message
    last_user_message, _ = chatbot[-1]
    
    # Check for empty or invalid last user message
    if not last_user_message or last_user_message.strip() == '' or last_user_message.lower() == 'system':
        chatbot.append(("System", "Cannot regenerate response for an empty or invalid message."))
        return chatbot, state
    
    # Remove last assistant's response from state
    if state is not None and len(state) > 0:
        state = state[:-1]  # Remove last assistant's response from history
        if len(state) == 0:
            state = None
    else:
        state = None
   
    # Set generation config
    do_sample = (float(temperature) != 0.0)    

    generation_config = dict(
        num_beams=1,
        max_new_tokens=int(max_new_tokens),
        do_sample=do_sample,
        temperature= float(temperature),
        top_p= float(top_p),
    )
    

    # Regenerate the response
    if '2b' in model_name.lower():
        response_text, new_state = model.chat(
            tokenizer,
            image_input,
            last_user_message,
            max_tiles = int(tile_num),
            generation_config=generation_config,
            history=state,  # Exclude last assistant's response
            return_history=True
        )
    if '0.8b' in model_name.lower():
        response_text, new_state = model.ocr(
            tokenizer,
            image_input,
            last_user_message,
            max_tiles = int(tile_num),
            generation_config=generation_config,
            history=state,  # Exclude last assistant's response
            return_history=True
        )
    
    # Update the state with new_state
    state = new_state
    
    # Update chatbot with the regenerated response
    chatbot[-1] = (last_user_message, response_text)
       
    return chatbot, state


def clear_all():
    return [], None, None, ""  # Clear chatbot, state, reset image_input


title_html = """
<h1> <span class="gradient-text" id="text">H2OVL-Mississippi</span><span class="plain-text">: Lightweight Vision Language Models for OCR and Doc AI tasks</span></h1>
<a href="https://huggingface.co/collections/h2oai/h2ovl-mississippi-66e492da45da0a1b7ea7cf39">[😊 Hugging Face]</a> 
<a href="https://arxiv.org/abs/2410.13611">[πŸ“œ Paper]</a> 
<a href="https://huggingface.co/spaces/h2oai/h2ovl-mississippi-benchmarks">[🌟 Benchmarks]</a> 
"""



# Build the Gradio interface
with gr.Blocks() as demo:
    gr.HTML(title_html)
    gr.HTML("""
        <style>
        .gradient-text {
            font-size: 36px !important;
            font-weight: bold !important;
        }
        .plain-text {
            font-size: 32px !important;
        }
        h1 {
            margin-bottom: 20px !important;
        }
        </style>
    """)

    state= gr.State()
    model_state = gr.State()

    with gr.Row():
        model_dropdown = gr.Dropdown(
            choices=list(model_paths.keys()),
            label="Select Model",
            value="H2OVL-Mississippi-2B"
        )
        
        task_type_dropdown = gr.Dropdown(
            choices=["OCR", "Document extractor", "Chat"],
            label="Select Task Type",
            value="Document extractor"
        )
    
    with gr.Row(equal_height=True):
        # First column with image input
        with gr.Column(scale=1):
            image_input = gr.Image(type="filepath", label="Upload an Image")
             
     
        # Second column with chatbot and user input
        with gr.Column(scale=2):    
            chatbot = gr.Chatbot(label="Conversation")
            user_input = gr.Dropdown(label="What is your question", 
                                    choices = example_prompts,
                                    value=None,
                                    allow_custom_value=True,
                                    interactive=True)
            
            
    def reset_chatbot_state():
        # reset chatbot and state
        return [], None
    
    
    # When the model selection changes, load the new model
    model_dropdown.change(
        fn=load_model_and_set_image_function,
        inputs=[model_dropdown],
        outputs=[model_state]
    )
    
    model_dropdown.change(
        fn=reset_chatbot_state,
        inputs=None,
        outputs=[chatbot, state]
    )
     
    
    # Reset chatbot and state when image input changes
    image_input.change(
        fn=reset_chatbot_state,
        inputs=None,
        outputs=[chatbot, state]
    )
    
        # Load the default model when the app starts
    demo.load(
        fn=load_model_and_set_image_function,
        inputs=[model_dropdown],
        outputs=[model_state]
    )
    

        
    with gr.Accordion('Parameters', open=False):
        with gr.Row():
            temperature_input = gr.Slider(
                minimum=0.0, 
                maximum=1.0, 
                step=0.1, 
                value=0.2, 
                interactive=True,
                label="Temperature")
            top_p_input = gr.Slider(
                minimum=0.0, 
                maximum=1.0, 
                step=0.1, 
                value=0.9,
                interactive=True, 
                label="Top P")
            max_new_tokens_input = gr.Slider(
                minimum=64, 
                maximum=4096, 
                step=64, 
                value=1024, 
                interactive=True,
                label="Max New Tokens (default: 1024)")
            tile_num = gr.Slider(
                minimum=2, 
                maximum=12, 
                step=1, 
                value=6, 
                interactive=True,
                label="Tile Number (default: 6)"
            )
            
    model_dropdown.change(
        fn=update_task_type_on_model_change,
        inputs=[model_dropdown],
        outputs=[task_type_dropdown, max_new_tokens_input]
    )
    
    task_type_dropdown.change(
        fn=handle_task_type_and_prompt,
        inputs=[task_type_dropdown, model_dropdown],
        outputs=[max_new_tokens_input, user_input]
    )
            
    with gr.Row():
        submit_button = gr.Button("Submit")
        regenerate_button = gr.Button("Regenerate")
        clear_button = gr.Button("Clear")        

    # When the submit button is clicked, call the inference function
    submit_button.click(
        fn=inference, 
        inputs=[
            image_input, 
            user_input, 
            temperature_input, 
            top_p_input, 
            max_new_tokens_input, 
            tile_num,
            chatbot, 
            state, 
            model_state
        ], 
        outputs=[chatbot, state, user_input]
    )
    # When the regenerate button is clicked, re-run the last inference
    regenerate_button.click(
        fn=regenerate_response,
        inputs=[
            chatbot, 
            temperature_input, 
            top_p_input,
            max_new_tokens_input, 
            tile_num,
            state,
            image_input, 
            model_state
            ],
        outputs=[chatbot, state]
    )

    clear_button.click(
        fn=clear_all, 
        inputs=None, 
        outputs=[chatbot, state, image_input, user_input]
    )  
    
    def example_clicked(image_value, user_input_value):
        chatbot_value, state_value = [], None
        return image_value, user_input_value, chatbot_value, state_value  # Reset chatbot and state
    
                  
    gr.Examples(
        examples=[
            ["assets/handwritten-note-example.jpg", "Read the text and provide word by word ocr for the document. <doc>"],
            ["assets/rental_application.png", "Read the text and provide word by word ocr for the document. <doc>"],
            ["assets/receipt.jpg", "Read the text and provide word by word ocr for the document. <doc>"],
            ["assets/driver_license.png", "Extract the text from the image and fill the following json {'license_number':'',\n'full_name':'',\n'date_of_birth':'',\n'address':'',\n'issue_date':'',\n'expiration_date':'',\n}"],
            ["assets/invoice.png", "Please extract the following fields, and return the result in JSON format: supplier_name, supplier_address, customer_name, customer_address, invoice_number, invoice_total_amount, invoice_tax_amount"],
            ["assets/CBA-1H23-Results-Presentation_wheel.png", "What is the efficiency of H2O.AI in document processing?"],
        ],
        inputs = [image_input, user_input],
        outputs = [image_input, user_input, chatbot, state],
        fn=example_clicked,
        label = "examples",
    )
demo.queue()   
demo.launch(max_threads=10)