Spaces:
Sleeping
Sleeping
File size: 15,594 Bytes
b596e22 ab3d7d0 471e971 ab3d7d0 39b759d ab3d7d0 39b759d 6c5150b 73b2bf3 6c5150b 471e971 6c5150b 80d1b7a 2d6f1c5 80d1b7a bcfef20 6c5150b ab3d7d0 6c5150b ab3d7d0 6c5150b ab3d7d0 6c5150b ab3d7d0 6c5150b 7826ae6 6c5150b 84ce9df 7826ae6 ab3d7d0 6c5150b ab3d7d0 6c5150b 7826ae6 ab3d7d0 da76dba 6c5150b 84ce9df e809d4e 7826ae6 e809d4e 471e971 e809d4e 471e971 e809d4e d6bfd67 e809d4e 7826ae6 e809d4e 6c5150b 84ce9df 6c5150b 7826ae6 ab3d7d0 6c5150b ab3d7d0 6c5150b 7826ae6 ab3d7d0 da76dba e809d4e 7826ae6 e809d4e 7826ae6 e809d4e da76dba d259dc9 e809d4e d259dc9 e809d4e 471e971 e809d4e 471e971 d259dc9 d6bfd67 e809d4e d6bfd67 e809d4e d259dc9 e809d4e 7826ae6 e809d4e 471e971 e809d4e 7826ae6 1757eeb bcfef20 471e971 bcfef20 e809d4e 6c5150b da76dba 6c5150b bcfef20 80d1b7a 6c5150b ab3d7d0 6c5150b e809d4e 80d1b7a bcfef20 80d1b7a d259dc9 ab3d7d0 d259dc9 80d1b7a 1757eeb e809d4e 84ce9df e809d4e d6bfd67 e809d4e 84ce9df e809d4e 5099c24 bcfef20 471e971 1757eeb 5099c24 471e971 6c5150b 84ce9df 6c5150b ab3d7d0 6c5150b 7826ae6 1757eeb e809d4e 6c5150b 84ce9df 7826ae6 ab3d7d0 6c5150b 7826ae6 471e971 7826ae6 80d1b7a 123a59c 80d1b7a 5099c24 2f6e568 bcfef20 2f6e568 2d2df74 5099c24 92754e8 80d1b7a 5099c24 471e971 ab3d7d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import threading
import os
# caching the mode
model_cache = {}
tokenizer_cache = {}
model_lock = threading.Lock()
from huggingface_hub import login
hf_token = os.environ.get('hf_token', None)
# Define the models and their paths
model_paths = {
"H2OVL-Mississippi-2B":"h2oai/h2ovl-mississippi-2b",
"H2OVL-Mississippi-0.8B":"h2oai/h2ovl-mississippi-800m",
# Add more models as needed
}
example_prompts = [
"Read the text and provide word by word ocr for the document. <doc>",
"Read the text on the image",
"Extract the text from the image.",
"Extract the text from the image and fill the following json {'license_number':'',\n'full_name':'',\n'date_of_birth':'',\n'address':'',\n'issue_date':'',\n'expiration_date':'',\n}",
"Please extract the following fields, and return the result in JSON format: supplier_name, supplier_address, customer_name, customer_address, invoice_number, invoice_total_amount, invoice_tax_amount",
]
# Function to handle task type logic
def handle_task_type(task_type, model_name):
max_new_tokens = 1024 # Default value
if task_type == "OCR":
max_new_tokens = 3072 # Adjust for OCR
return max_new_tokens
# Function to handle task type logic and default question
def handle_task_type_and_prompt(task_type, model_name):
max_new_tokens = handle_task_type(task_type, model_name)
default_question = example_prompts[0] if task_type == "OCR" else None
return max_new_tokens, default_question
def update_task_type_on_model_change(model_name):
# Set default task type and max_new_tokens based on the model
if '2b' in model_name.lower():
return "Document extractor", handle_task_type("Document extractor", model_name)
elif '0.8b' in model_name.lower():
return "OCR", handle_task_type("OCR", model_name)
else:
return "Chat", handle_task_type("Chat", model_name)
def load_model_and_set_image_function(model_name):
# Get the model path from the model_paths dictionary
model_path = model_paths[model_name]
with model_lock:
if model_name in model_cache:
# model is already loaded; retrieve it from the cache
print(f"Model {model_name} is already loaded. Retrieving from cache.")
else:
# load the model and tokenizer
print(f"Loading model {model_name}...")
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_auth_token=hf_token,
# device_map="auto"
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True,
use_fast=False,
use_auth_token=hf_token
)
# add the model and tokenizer to the cache
model_cache[model_name] = model
tokenizer_cache[model_name] = tokenizer
print(f"Model {model_name} loaded successfully.")
return model_name
def inference(image_input,
user_message,
temperature,
top_p,
max_new_tokens,
tile_num,
chatbot,
state,
model_name):
# Check if model_state is None
if model_name is None:
chatbot.append(("System", "Please select a model to start the conversation."))
return chatbot, state, ""
with model_lock:
if model_name not in model_cache:
chatbot.append(("System", "Model not loaded. Please wait for the model to load."))
return chatbot, state, ""
model = model_cache[model_name]
tokenizer = tokenizer_cache[model_name]
# Check for empty or invalid user message
if not user_message or user_message.strip() == '' or user_message.lower() == 'system':
chatbot.append(("System", "Please enter a valid message to continue the conversation."))
return chatbot, state, ""
# if image is provided, store it in image_state:
if chatbot is None:
chatbot = []
if image_input is None:
chatbot.append(("System", "Please provide an image to start the conversation."))
return chatbot, state, ""
# Initialize history (state) if it's None
if state is None:
state = None # model.chat function handles None as empty history
# Append user message to chatbot
chatbot.append((user_message, None))
# Set generation config
do_sample = (float(temperature) != 0.0)
generation_config = dict(
num_beams=1,
max_new_tokens=int(max_new_tokens),
do_sample=do_sample,
temperature= float(temperature),
top_p= float(top_p),
)
# Call model.chat with history
if '2b' in model_name.lower():
response_text, new_state = model.chat(
tokenizer,
image_input,
user_message,
max_tiles = int(tile_num),
generation_config=generation_config,
history=state,
return_history=True
)
if '0.8b' in model_name.lower():
response_text, new_state = model.ocr(
tokenizer,
image_input,
user_message,
max_tiles = int(tile_num),
generation_config=generation_config,
history=state,
return_history=True
)
# update the satet with new_state
state = new_state
# Update chatbot with the model's response
chatbot[-1] = (user_message, response_text)
return chatbot, state, ""
def regenerate_response(chatbot,
temperature,
top_p,
max_new_tokens,
tile_num,
state,
image_input,
model_name):
# Check if model_state is None
if model_name is None:
chatbot.append(("System", "Please select a model to start the conversation."))
return chatbot, state
with model_lock:
if model_name not in model_cache:
chatbot.append(("System", "Model not loaded. Please wait for the model to load."))
return chatbot, state
model = model_cache[model_name]
tokenizer = tokenizer_cache[model_name]
# Check if there is a previous user message
if chatbot is None or len(chatbot) == 0:
chatbot = []
chatbot.append(("System", "Nothing to regenerate. Please start a conversation first."))
return chatbot, state,
# Get the last user message
last_user_message, _ = chatbot[-1]
# Check for empty or invalid last user message
if not last_user_message or last_user_message.strip() == '' or last_user_message.lower() == 'system':
chatbot.append(("System", "Cannot regenerate response for an empty or invalid message."))
return chatbot, state
# Remove last assistant's response from state
if state is not None and len(state) > 0:
state = state[:-1] # Remove last assistant's response from history
if len(state) == 0:
state = None
else:
state = None
# Set generation config
do_sample = (float(temperature) != 0.0)
generation_config = dict(
num_beams=1,
max_new_tokens=int(max_new_tokens),
do_sample=do_sample,
temperature= float(temperature),
top_p= float(top_p),
)
# Regenerate the response
if '2b' in model_name.lower():
response_text, new_state = model.chat(
tokenizer,
image_input,
last_user_message,
max_tiles = int(tile_num),
generation_config=generation_config,
history=state, # Exclude last assistant's response
return_history=True
)
if '0.8b' in model_name.lower():
response_text, new_state = model.ocr(
tokenizer,
image_input,
last_user_message,
max_tiles = int(tile_num),
generation_config=generation_config,
history=state, # Exclude last assistant's response
return_history=True
)
# Update the state with new_state
state = new_state
# Update chatbot with the regenerated response
chatbot[-1] = (last_user_message, response_text)
return chatbot, state
def clear_all():
return [], None, None, "" # Clear chatbot, state, reset image_input
title_html = """
<h1> <span class="gradient-text" id="text">H2OVL-Mississippi</span><span class="plain-text">: Lightweight Vision Language Models for OCR and Doc AI tasks</span></h1>
<a href="https://huggingface.co/collections/h2oai/h2ovl-mississippi-66e492da45da0a1b7ea7cf39">[π Hugging Face]</a>
<a href="https://arxiv.org/abs/2410.13611">[π Paper]</a>
<a href="https://huggingface.co/spaces/h2oai/h2ovl-mississippi-benchmarks">[π Benchmarks]</a>
"""
# Build the Gradio interface
with gr.Blocks() as demo:
gr.HTML(title_html)
gr.HTML("""
<style>
.gradient-text {
font-size: 36px !important;
font-weight: bold !important;
}
.plain-text {
font-size: 32px !important;
}
h1 {
margin-bottom: 20px !important;
}
</style>
""")
state= gr.State()
model_state = gr.State()
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(model_paths.keys()),
label="Select Model",
value="H2OVL-Mississippi-2B"
)
task_type_dropdown = gr.Dropdown(
choices=["OCR", "Document extractor", "Chat"],
label="Select Task Type",
value="Document extractor"
)
with gr.Row(equal_height=True):
# First column with image input
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload an Image")
# Second column with chatbot and user input
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
user_input = gr.Dropdown(label="What is your question",
choices = example_prompts,
value=None,
allow_custom_value=True,
interactive=True)
def reset_chatbot_state():
# reset chatbot and state
return [], None
# When the model selection changes, load the new model
model_dropdown.change(
fn=load_model_and_set_image_function,
inputs=[model_dropdown],
outputs=[model_state]
)
model_dropdown.change(
fn=reset_chatbot_state,
inputs=None,
outputs=[chatbot, state]
)
# Reset chatbot and state when image input changes
image_input.change(
fn=reset_chatbot_state,
inputs=None,
outputs=[chatbot, state]
)
# Load the default model when the app starts
demo.load(
fn=load_model_and_set_image_function,
inputs=[model_dropdown],
outputs=[model_state]
)
with gr.Accordion('Parameters', open=False):
with gr.Row():
temperature_input = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.2,
interactive=True,
label="Temperature")
top_p_input = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
interactive=True,
label="Top P")
max_new_tokens_input = gr.Slider(
minimum=64,
maximum=4096,
step=64,
value=1024,
interactive=True,
label="Max New Tokens (default: 1024)")
tile_num = gr.Slider(
minimum=2,
maximum=12,
step=1,
value=6,
interactive=True,
label="Tile Number (default: 6)"
)
model_dropdown.change(
fn=update_task_type_on_model_change,
inputs=[model_dropdown],
outputs=[task_type_dropdown, max_new_tokens_input]
)
task_type_dropdown.change(
fn=handle_task_type_and_prompt,
inputs=[task_type_dropdown, model_dropdown],
outputs=[max_new_tokens_input, user_input]
)
with gr.Row():
submit_button = gr.Button("Submit")
regenerate_button = gr.Button("Regenerate")
clear_button = gr.Button("Clear")
# When the submit button is clicked, call the inference function
submit_button.click(
fn=inference,
inputs=[
image_input,
user_input,
temperature_input,
top_p_input,
max_new_tokens_input,
tile_num,
chatbot,
state,
model_state
],
outputs=[chatbot, state, user_input]
)
# When the regenerate button is clicked, re-run the last inference
regenerate_button.click(
fn=regenerate_response,
inputs=[
chatbot,
temperature_input,
top_p_input,
max_new_tokens_input,
tile_num,
state,
image_input,
model_state
],
outputs=[chatbot, state]
)
clear_button.click(
fn=clear_all,
inputs=None,
outputs=[chatbot, state, image_input, user_input]
)
def example_clicked(image_value, user_input_value):
chatbot_value, state_value = [], None
return image_value, user_input_value, chatbot_value, state_value # Reset chatbot and state
gr.Examples(
examples=[
["assets/handwritten-note-example.jpg", "Read the text and provide word by word ocr for the document. <doc>"],
["assets/rental_application.png", "Read the text and provide word by word ocr for the document. <doc>"],
["assets/receipt.jpg", "Read the text and provide word by word ocr for the document. <doc>"],
["assets/driver_license.png", "Extract the text from the image and fill the following json {'license_number':'',\n'full_name':'',\n'date_of_birth':'',\n'address':'',\n'issue_date':'',\n'expiration_date':'',\n}"],
["assets/invoice.png", "Please extract the following fields, and return the result in JSON format: supplier_name, supplier_address, customer_name, customer_address, invoice_number, invoice_total_amount, invoice_tax_amount"],
["assets/CBA-1H23-Results-Presentation_wheel.png", "What is the efficiency of H2O.AI in document processing?"],
],
inputs = [image_input, user_input],
outputs = [image_input, user_input, chatbot, state],
fn=example_clicked,
label = "examples",
)
demo.queue()
demo.launch(max_threads=10) |