File size: 3,072 Bytes
47488ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
from kidney_classification.constants import *
from kidney_classification.utils.common import read_yaml, create_directories, save_json
from kidney_classification.entity.config_entity import (
    DataIngestionConfig,
    PrepareBaseModelConfig,
    TrainingConfig,
    EvaluationConfig,
)


class ConfigurationManager:
    def __init__(
        self, config_filepath=CONFIG_FILE_PATH, params_filepath=PARAMS_FILE_PATH
    ):
        self.config = read_yaml(config_filepath)
        self.params = read_yaml(params_filepath)

        create_directories([self.config.artifacts_root])

    def get_data_ingestion_config(self) -> DataIngestionConfig:
        config = self.config.data_ingestion

        create_directories([config.root_dir])

        data_ingestion_config = DataIngestionConfig(
            root_dir=config.root_dir,
            source_URL=config.source_URL,
            local_data_file=config.local_data_file,
            unzip_dir=config.unzip_dir,
        )

        return data_ingestion_config

    def get_prepare_base_model_config(self) -> PrepareBaseModelConfig:
        config = self.config.prepare_base_model

        create_directories([config.root_dir])

        prepare_base_model_config = PrepareBaseModelConfig(
            root_dir=Path(config.root_dir),
            base_model_path=Path(config.base_model_path),
            updated_base_model_path=Path(config.updated_base_model_path),
            params_image_size=self.params.IMAGE_SIZE,
            params_include_top=self.params.INCLUDE_TOP,
            params_weights=self.params.WEIGHTS,
            params_classes=self.params.CLASSES,
        )

        return prepare_base_model_config

    def get_training_config(self) -> TrainingConfig:
        training = self.config.training
        prepare_base_model = self.config.prepare_base_model
        params = self.params
        training_data = os.path.join(
            self.config.data_ingestion.unzip_dir,
            "CT-KIDNEY-DATASET-Normal-Cyst-Tumor-Stone",
        )
        create_directories([Path(training.root_dir)])

        training_config = TrainingConfig(
            root_dir=Path(training.root_dir),
            trained_model_path=Path(training.trained_model_path),
            updated_base_model_path=Path(prepare_base_model.updated_base_model_path),
            training_data=Path(training_data),
            params_epochs=params.EPOCHS,
            params_batch_size=params.BATCH_SIZE,
            params_image_size=params.IMAGE_SIZE,
        )

        return training_config

    def get_evaluation_config(self) -> EvaluationConfig:
        eval_config = EvaluationConfig(
            path_of_model="artifacts/training/model.h5",
            training_data="artifacts/data_ingestion/CT-KIDNEY-DATASET-Normal-Cyst-Tumor-Stone",
            mlflow_uri="https://dagshub.com/Shrey-patel-07/Kidney-Disease-Classifcation.mlflow",
            all_params=self.params,
            params_image_size=self.params.IMAGE_SIZE,
            params_batch_size=self.params.BATCH_SIZE,
        )
        return eval_config