Spaces:
Sleeping
Sleeping
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
import os | |
class PredictionPipeline: | |
def __init__(self, filename): | |
self.filename = filename | |
def predict(self): | |
model = load_model(os.path.join("model", "model.h5")) | |
imagename = self.filename | |
test_image = image.load_img(imagename, target_size=(150, 150)) | |
test_image = image.img_to_array(test_image) | |
test_image = np.expand_dims(test_image, axis=0) | |
result = np.argmax(model.predict(test_image), axis=1) | |
if result[0] == 0: | |
prediction = "Cyst" | |
return [{"image": prediction}] | |
elif result[0] == 1: | |
prediction = "Normal" | |
return [{"image": prediction}] | |
elif result[0] == 2: | |
prediction = "Stone" | |
return [{"image": prediction}] | |
else: | |
prediction = "Tumor" | |
return [{"image": prediction}] | |