Spaces:
Sleeping
Sleeping
| import sys | |
| sys.path.append("./src") | |
| from kidney_classification.pipeline.prediction import PredictionPipeline | |
| from kidney_classification.utils.common import decodeImage | |
| from flask_cors import CORS, cross_origin | |
| import os | |
| from flask import Flask, request, jsonify, render_template | |
| os.putenv("LANG", "en_US.UTF-8") | |
| os.putenv("LC_ALL", "en_US.UTF-8") | |
| app = Flask(__name__) | |
| CORS(app) | |
| class ClientApp: | |
| def __init__(self): | |
| self.filename = "inputImage.jpg" | |
| self.classifier = PredictionPipeline(self.filename) | |
| def home(): | |
| return render_template("index.html") | |
| def trainRoute(): | |
| os.system("dvc repro") | |
| return "Training done successfully!" | |
| def predictRoute(): | |
| image = request.json["image"] | |
| decodeImage(image, clApp.filename) | |
| result = clApp.classifier.predict() | |
| return jsonify(result) | |
| if __name__ == "__main__": | |
| clApp = ClientApp() | |
| app.run(host="0.0.0.0", port=8080) # for AWS | |