Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_chroma import Chroma | |
import re | |
import dotenv | |
from utils import HuggingChat | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
import langchain | |
# import json | |
# import shutil | |
# import magic | |
# import ollama | |
# from langchain_community.vectorstores.qdrant import Qdrant | |
# from langchain_core.documents import Document | |
# from langchain_core.prompts import ChatPromptTemplate | |
# from langchain_community.chains import | |
from langchain_community.chat_models import ChatOllama | |
# from hugchat import hugchat | |
# from langchain.callbacks import SystemMessage | |
# from hugchat.login import Login | |
langchain.debug = True | |
dotenv.load_dotenv() | |
print(os.getenv("HF_EMAIL")) | |
print(os.getenv("HF_PASS")) | |
class GradioApp: | |
def __init__(self): | |
self.history = [] | |
self.links = [] | |
# template = """ | |
# You are a helpful health assistant. These Human will ask you a questions about their pregnancy health. | |
# Use following piece of context to answer the question. | |
# If you don't know the answer, just say you don't know. | |
# Keep the answer within 2 sentences and concise. | |
# Context: {context} | |
# Question: {question} | |
# Answer: """ | |
self.template = """ | |
You are a helpful AI bot that guides the customer or user through the website content and provides the user with exact details they want. | |
You help everyone by answering questions, and improve your answers from previous answers in History. | |
Don't try to make up an answer, if you don't know, say you can contact the support team at https://pragetx.com/contact-us/ | |
Answer in the same language the question was asked. | |
Answer in a way that is easy to understand. | |
Try to limit the answer to 3-4 sentences. | |
Provide source url as well at the end of the answer. | |
Do not say "Based on the information you provided, ..." or "I think the answer is...". Just answer the question directly in detail. | |
History: {chat_history} | |
Context: {context} | |
Question: {question} | |
Answer: | |
""" | |
self.prompt = PromptTemplate( | |
template=self.template, | |
input_variables=["chat_history","context", "question"] | |
) | |
self.db = Chroma(persist_directory="./pragetx_chroma", embedding_function=HuggingFaceEmbeddings(), collection_name="pragetx") | |
# self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=16) | |
self.llm = HuggingChat(email = os.getenv("HF_EMAIL") , psw = os.getenv("HF_PASS") ) | |
self.chain = ( | |
{"chat_history": self.chat_history, "context": self.db.as_retriever(search_kwargs={"k":3}), "question": RunnablePassthrough()} | | |
self.prompt | | |
self.llm | | |
StrOutputParser()) | |
def chat_history(self, history): | |
print(self.history) | |
print("\n".join(f"##Human: {x[0]}\n{'##Bot: '+x[1] if x[1] else ''}" for x in self.history)) | |
return "\n".join(f"##Human: {x[0]}\n{'##Bot: '+x[1] if x[1] else ''}" for x in self.history) | |
def user(self,user_message, history): | |
self.history = history + [[user_message, None]] | |
return "", history + [[user_message, None]] | |
def bot(self,history): | |
print(history) | |
prompt = history[-1][0] or "" | |
for chunks in self.chain.stream(prompt): | |
history[-1][1] = history[-1][1] or "" | |
history[-1][1] += chunks | |
yield history | |
history[-1][1] = history[-1][1] or "" | |
self.history = history | |
# extract links in the response and store them | |
links = re.findall(r'(https?://\S+)', history[-1][1]) | |
print(links) | |
self.links = links | |
print(history[-1][1]) | |
print(history) | |
# def list_links(self): | |
# print( "link_buttons", self.links) | |
# link_buttons = [] | |
# for link in range(5): | |
# if link < len(self.links): | |
# btn = gr.Button(f"Open {self.links[link]}", visible=True) | |
# else: | |
# btn = gr.Button(visible=False) | |
# link_buttons.append(btn) | |
# return link_buttons | |
with gr.Blocks() as demo: | |
gradio_app = GradioApp() | |
# link_buttons = [] | |
# files = gr.Files(label="Upload Documents and Medical Reports", type="filepath", file_types=["pdf", "docx", "jpg", "jpeg", "png"]) | |
# upload_button = gr.UploadButton(label="Upload Documents and Medical Reports", type="filepath", file_count='multiple', file_types=["pdf", "docx", "jpg", "jpeg", "png"], ) | |
output_text = gr.Markdown(label="Output", value=" ") | |
infer_status = gr.Label("Infer Status: ", visible=False) | |
# upload_button.upload(gradio_app.upload_files, upload_button, [files, output_text]) | |
chatbot = gr.Chatbot() | |
# with gr.Row(): | |
# for link in range(5): | |
# btn = gr.Button(visible=False) | |
# link_buttons.append(btn) | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
# for link in range(5): | |
# print(gradio_app.links) | |
# btn.click(lambda: None, None, None, js=f"window.location.assign('{gradio_app.links[link]}');" if link < len(gradio_app.links) else None) | |
msg.submit(gradio_app.user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
gradio_app.bot, chatbot, chatbot | |
) | |
# .then( | |
# gradio_app.list_links, None, link_buttons | |
# ) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue() | |
demo.launch(share=True, server_name="0.0.0.0", root_path="/bot") | |