File size: 1,312 Bytes
72db4a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
# Copied from https://github.com/johnsmith0031/alpaca_lora_4bit
from pathlib import Path
import alpaca_lora_4bit.autograd_4bit as autograd_4bit
from alpaca_lora_4bit.amp_wrapper import AMPWrapper
from alpaca_lora_4bit.autograd_4bit import (
Autograd4bitQuantLinear,
load_llama_model_4bit_low_ram
)
from alpaca_lora_4bit.models import Linear4bitLt
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
replace_peft_model_with_int4_lora_model
)
from modules import shared
from modules.GPTQ_loader import find_quantized_model_file
replace_peft_model_with_int4_lora_model()
def load_model_llama(model_name):
config_path = str(Path(f'{shared.args.model_dir}/{model_name}'))
model_path = str(find_quantized_model_file(model_name))
model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=shared.args.groupsize, is_v1_model=False)
for _, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt):
if m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
autograd_4bit.auto_switch = True
model.half()
wrapper = AMPWrapper(model)
wrapper.apply_generate()
return model, tokenizer
|