Spaces:
Runtime error
Runtime error
from io import BytesIO | |
import requests | |
import gradio as gr | |
import requests | |
import torch | |
from tqdm import tqdm | |
from PIL import Image, ImageOps | |
from diffusers import StableDiffusionInpaintPipeline | |
from torchvision.transforms import ToPILImage | |
from utils import preprocess, prepare_mask_and_masked_image, recover_image, resize_and_crop | |
gr.close_all() | |
topil = ToPILImage() | |
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", | |
revision="fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe_inpaint = pipe_inpaint.to("cuda") | |
## Good params for editing that we used all over the paper --> decent quality and speed | |
GUIDANCE_SCALE = 7.5 | |
NUM_INFERENCE_STEPS = 100 | |
DEFAULT_SEED = 1234 | |
def pgd(X, targets, model, criterion, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None): | |
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda() | |
pbar = tqdm(range(iters)) | |
for i in pbar: | |
actual_step_size = step_size - (step_size - step_size / 100) / iters * i | |
X_adv.requires_grad_(True) | |
loss = (model(X_adv).latent_dist.mean - targets).norm() | |
pbar.set_description(f"Loss {loss.item():.5f} | step size: {actual_step_size:.4}") | |
grad, = torch.autograd.grad(loss, [X_adv]) | |
X_adv = X_adv - grad.detach().sign() * actual_step_size | |
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps) | |
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max) | |
X_adv.grad = None | |
if mask is not None: | |
X_adv.data *= mask | |
return X_adv | |
def get_target(): | |
target_url = 'https://www.rtings.com/images/test-materials/2015/204_Gray_Uniformity.png' | |
response = requests.get(target_url) | |
target_image = Image.open(BytesIO(response.content)).convert("RGB") | |
target_image = target_image.resize((512, 512)) | |
return target_image | |
def immunize_fn(init_image, mask_image): | |
with torch.autocast('cuda'): | |
mask, X = prepare_mask_and_masked_image(init_image, mask_image) | |
X = X.half().cuda() | |
mask = mask.half().cuda() | |
targets = pipe_inpaint.vae.encode(preprocess(get_target()).half().cuda()).latent_dist.mean | |
adv_X = pgd(X, | |
targets = targets, | |
model=pipe_inpaint.vae.encode, | |
criterion=torch.nn.MSELoss(), | |
clamp_min=-1, | |
clamp_max=1, | |
eps=0.12, | |
step_size=0.01, | |
iters=200, | |
mask=1-mask | |
) | |
adv_X = (adv_X / 2 + 0.5).clamp(0, 1) | |
adv_image = topil(adv_X[0]).convert("RGB") | |
adv_image = recover_image(adv_image, init_image, mask_image, background=True) | |
return adv_image | |
def run(image, prompt, seed, guidance_scale, num_inference_steps, immunize=False): | |
if seed == '': | |
seed = DEFAULT_SEED | |
else: | |
seed = int(seed) | |
torch.manual_seed(seed) | |
init_image = Image.fromarray(image['image']) | |
init_image = resize_and_crop(init_image, (512,512)) | |
mask_image = ImageOps.invert(Image.fromarray(image['mask']).convert('RGB')) | |
mask_image = resize_and_crop(mask_image, init_image.size) | |
if immunize: | |
immunized_image = immunize_fn(init_image, mask_image) | |
image_edited = pipe_inpaint(prompt=prompt, | |
image=init_image if not immunize else immunized_image, | |
mask_image=mask_image, | |
height = init_image.size[0], | |
width = init_image.size[1], | |
eta=1, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
).images[0] | |
image_edited = recover_image(image_edited, init_image, mask_image) | |
if immunize: | |
return [(immunized_image, 'Immunized Image'), (image_edited, 'Edited After Immunization')] | |
else: | |
return [(image_edited, 'Edited Image (Without Immunization)')] | |
description='''<u>Demo of our paper: <br> | |
**Raising the Cost of Malicious AI-Powered Image Editing** <br> | |
*[Hadi Salman](https://twitter.com/hadisalmanX), [Alaa Khaddaj](https://twitter.com/Alaa_Khaddaj), [Guillaume Leclerc](https://twitter.com/gpoleclerc), [Andrew Ilyas](https://twitter.com/andrew_ilyas), [Aleksander Madry](https://twitter.com/aleks_madry)* <br> | |
MIT [Paper](https://arxiv.org/abs/2302.06588) | |
[Blog post](https://gradientscience.org/photoguard/) | |
[![](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/MadryLab/photoguard) | |
<br /> | |
Below you can test our (encoder attack) immunization method for making images resistant to manipulation by Stable Diffusion. This immunization process forces the model to perform unrealistic edits. | |
**See Section 5 in our paper for a discussion of the intended use cases for (as well as limitations of) this tool.** | |
<br /> | |
''' | |
examples_list = [ | |
['./images/hadi_and_trevor.jpg', 'man attending a wedding', '329357', GUIDANCE_SCALE, NUM_INFERENCE_STEPS], | |
['./images/trevor_2.jpg', 'two men in prison', '329357', GUIDANCE_SCALE, NUM_INFERENCE_STEPS], | |
['./images/elon_2.jpg', 'man in a metro station', '214213', GUIDANCE_SCALE, NUM_INFERENCE_STEPS], | |
] | |
with gr.Blocks() as demo: | |
gr.HTML(value="""<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
Interactive Demo: Raising the Cost of Malicious AI-Powered Image Editing </h1> | |
""") | |
gr.Markdown(description) | |
with gr.Accordion(label='How to use (step by step):', open=False): | |
gr.Markdown(''' | |
*First, let's edit your image:* | |
+ Upload an image (or select from the examples below) | |
+ Use the brush to mask the parts of the image you want to keep unedited (e.g., faces of people) | |
+ Add a prompt to guide the edit (see examples below) | |
+ Play with the seed and click submit until you get a realistic edit that you are happy with (we provided good example seeds for you below) | |
*Now, let's immunize your image and try again:* | |
+ Click on the "Immunize" button, then submit. | |
+ You will get an immunized version of the image (which should look essentially identical to the original one) as well as its edited version (which should now look rather unrealistic) | |
''') | |
with gr.Accordion(label='Example (video):', open=False): | |
gr.HTML(''' | |
<center> | |
<iframe width="920" height="600" src="https://www.youtube.com/embed/aTC59Q6ZDNM"> | |
allow="fullscreen;" frameborder="0"> | |
</iframe> | |
</center> | |
''' | |
) | |
with gr.Row(): | |
with gr.Column(): | |
imgmask = gr.ImageMask(label='Drawing tool to mask regions you want to keep, e.g. faces') | |
prompt = gr.Textbox(label='Prompt', placeholder='A photo of a man in a wedding') | |
seed = gr.Textbox(label='Seed (change to get different edits)', placeholder=str(DEFAULT_SEED), visible=True) | |
with gr.Accordion("Advanced options (to improve quality of edits)", open=False): | |
scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=25.0, value=GUIDANCE_SCALE, step=0.1) | |
num_steps = gr.Slider(label="Number of inference steps (higher better, but slower)", minimum=10, maximum=250, value=NUM_INFERENCE_STEPS, step=5) | |
immunize = gr.Checkbox(label='Immunize', value=False) | |
b1 = gr.Button('Submit') | |
with gr.Column(): | |
genimages = gr.Gallery(label="Generated images", | |
show_label=False, | |
elem_id="gallery").style(grid=[1,2], height="auto") | |
duplicate = gr.HTML(""" | |
<p>For faster inference without waiting in queue, run this demo locally (instruction in our Github repo), or duplicate this space and upgrade to GPU in settings. | |
<br/> | |
<a href="https://github.com/MadryLab/photoguard"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://badgen.net/badge/icon/GitHub?icon=github&label"></a> | |
<a href="https://huggingface.co/spaces/hadisalman/photoguard?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
<p/> | |
""") | |
b1.click(run, [imgmask, prompt, seed, scale, num_steps, immunize], [genimages]) | |
examples = gr.Examples(examples=examples_list,inputs = [imgmask, prompt, seed, scale, num_steps, immunize], outputs=[genimages], cache_examples=False, fn=run) | |
demo.launch() | |
# demo.launch(server_name='0.0.0.0', share=False, server_port=7860, inline=False) |