hadisalman commited on
Commit
50b15cd
1 Parent(s): 21f18f8
.gitattributes CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *jpg filter=lfs diff=lfs merge=lfs -text
36
+ *.jpg filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
+ import requests
3
+ import gradio as gr
4
+ import requests
5
+ import torch
6
+ from tqdm import tqdm
7
+ from PIL import Image, ImageOps
8
+ from diffusers import StableDiffusionInpaintPipeline
9
+ from torchvision.transforms import ToPILImage
10
+ from utils import preprocess, prepare_mask_and_masked_image, recover_image, resize_and_crop
11
+
12
+ gr.close_all()
13
+ topil = ToPILImage()
14
+
15
+ pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
16
+ "runwayml/stable-diffusion-inpainting",
17
+ revision="fp16",
18
+ torch_dtype=torch.float16,
19
+ safety_checker=None,
20
+ )
21
+ pipe_inpaint = pipe_inpaint.to("cuda")
22
+
23
+ ## Good params for editing that we used all over the paper --> decent quality and speed
24
+ GUIDANCE_SCALE = 7.5
25
+ NUM_INFERENCE_STEPS = 100
26
+
27
+ def pgd(X, targets, model, criterion, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
28
+ X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
29
+ pbar = tqdm(range(iters))
30
+ for i in pbar:
31
+ actual_step_size = step_size - (step_size - step_size / 100) / iters * i
32
+ X_adv.requires_grad_(True)
33
+
34
+ loss = (model(X_adv).latent_dist.mean - targets).norm()
35
+ pbar.set_description(f"Loss {loss.item():.5f} | step size: {actual_step_size:.4}")
36
+
37
+ grad, = torch.autograd.grad(loss, [X_adv])
38
+
39
+ X_adv = X_adv - grad.detach().sign() * actual_step_size
40
+ X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
41
+ X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
42
+ X_adv.grad = None
43
+
44
+ if mask is not None:
45
+ X_adv.data *= mask
46
+
47
+ return X_adv
48
+
49
+ def get_target():
50
+ target_url = 'https://www.rtings.com/images/test-materials/2015/204_Gray_Uniformity.png'
51
+ response = requests.get(target_url)
52
+ target_image = Image.open(BytesIO(response.content)).convert("RGB")
53
+ target_image = target_image.resize((512, 512))
54
+ return target_image
55
+
56
+ def immunize_fn(init_image, mask_image):
57
+ with torch.autocast('cuda'):
58
+ mask, X = prepare_mask_and_masked_image(init_image, mask_image)
59
+ X = X.half().cuda()
60
+ mask = mask.half().cuda()
61
+
62
+ targets = pipe_inpaint.vae.encode(preprocess(get_target()).half().cuda()).latent_dist.mean
63
+
64
+ adv_X = pgd(X,
65
+ targets = targets,
66
+ model=pipe_inpaint.vae.encode,
67
+ criterion=torch.nn.MSELoss(),
68
+ clamp_min=-1,
69
+ clamp_max=1,
70
+ eps=0.1,
71
+ step_size=0.01,
72
+ iters=200,
73
+ mask=1-mask
74
+ )
75
+
76
+ adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
77
+
78
+ adv_image = topil(adv_X[0]).convert("RGB")
79
+ adv_image = recover_image(adv_image, init_image, mask_image, background=True)
80
+ return adv_image
81
+
82
+ def run(image, prompt, seed, immunize=False):
83
+ seed = int(seed)
84
+ torch.manual_seed(seed)
85
+
86
+ init_image = Image.fromarray(image['image'])
87
+ init_image = resize_and_crop(init_image, (512,512))
88
+ mask_image = ImageOps.invert(Image.fromarray(image['mask']).convert('RGB')).resize(init_image.size)
89
+ mask_image = resize_and_crop(mask_image, init_image.size)
90
+
91
+ if immunize:
92
+ immunized_image = immunize_fn(init_image, mask_image)
93
+
94
+ image_edited = pipe_inpaint(prompt=prompt,
95
+ image=init_image if not immunize else immunized_image,
96
+ mask_image=mask_image,
97
+ height = init_image.size[0],
98
+ width = init_image.size[1],
99
+ eta=1,
100
+ guidance_scale=GUIDANCE_SCALE,
101
+ num_inference_steps=NUM_INFERENCE_STEPS,
102
+ ).images[0]
103
+
104
+ image_edited = recover_image(image_edited, init_image, mask_image)
105
+
106
+ if immunize:
107
+ return [(immunized_image, 'Immunized Image'), (image_edited, 'Edited After Immunization')]
108
+ else:
109
+ return [(image_edited, 'Edited Image')]
110
+
111
+
112
+ demo = gr.Interface(fn=run,
113
+ inputs=[
114
+ gr.ImageMask(label='Input Image'),
115
+ gr.Textbox(label='Prompt', placeholder='A photo of a man in a wedding'),
116
+ gr.Textbox(label='Seed', placeholder='1234', visible=True),
117
+ gr.Checkbox(label='Immunize'),
118
+ ],
119
+ outputs=[gr.Gallery(
120
+ label="Generated images",
121
+ show_label=False,
122
+ elem_id="gallery").style(grid=[1,2], height="auto")],
123
+ examples=[
124
+ ['./images/hadi_and_trevor.jpg', 'man attending a wedding', '329357'],
125
+ ['./images/trevor_2.jpg', 'two men in prison', '329357'],
126
+ ['./images/trevor_3.jpg', 'man in a private jet', '329357'],
127
+ ['./images/elon_2.jpg', 'man in a metro station', '214213'],
128
+ ],
129
+ examples_per_page=20,
130
+ allow_flagging='never',
131
+ title="Immunize your photos against manipulation by Stable Diffusion",
132
+ description='''<u>Official</u> demo of our paper: <br>
133
+ **Raising the Cost of Malicious AI-Powered Image Editing** <br>
134
+ *Hadi Salman\*, Alaa Khaddaj\*, Guillaume Leclerc\*, Andrew Ilyas, Aleksander Madry* <br>
135
+ [Paper](https://arxiv.org/abs/2302.06588)
136
+ &nbsp;&nbsp;[Blog post](https://gradientscience.org/photoguard/)
137
+ &nbsp;&nbsp;[![](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/MadryLab/photoguard)
138
+ <br />
139
+ We present an approach to mitigating the risks of malicious image editing posed by large diffusion models. The key idea is to immunize images so as to make them resistant to manipulation by these models. This immunization relies on injection of imperceptible adversarial perturbations designed to disrupt the operation of the targeted diffusion models, forcing them to generate unrealistic images.
140
+ <br />
141
+ <br />
142
+ **Demo steps:**
143
+ + Upload an image (or select from the below examples!)
144
+ + Mask the parts of the image you want to maintain unedited (e.g., faces of people)
145
+ + Add a prompt to edit the image accordingly (see examples below)
146
+ + Play with the seed and click submit until you get a realistic edit that you are happy with (we have good seeds for you below)
147
+
148
+ Now let's immunize your image and try again!
149
+ + Click on the "immunize" button, then submit.
150
+ + You will get the immunized image (which looks identical to the original one) and the edited image, which is now hopefully unrealistic!
151
+ <br />
152
+ **This is a research project and is not production-ready.**
153
+ ''',
154
+ )
155
+
156
+ demo.launch()
157
+ # demo.launch(server_name='0.0.0.0', share=False, server_port=7860, inline=False, )
images/elon_1.jpg ADDED

Git LFS Details

  • SHA256: b461ad0d0c64453a72083c90ac50fa30026e8e3ac1defc74ff584965159ec17f
  • Pointer size: 131 Bytes
  • Size of remote file: 395 kB
images/elon_2.jpg ADDED

Git LFS Details

  • SHA256: e084ef96bdd5fdec4577a8463bf10650d037c7a91babcc95367bb1577ad4d551
  • Pointer size: 132 Bytes
  • Size of remote file: 1.3 MB
images/hadi_and_trevor.jpg ADDED

Git LFS Details

  • SHA256: d4141c2ca76c57a4dc9c436ff0d9cc881a3de1c4cdbc66311a5518c40419cbdb
  • Pointer size: 131 Bytes
  • Size of remote file: 146 kB
images/trevor_2.jpg ADDED

Git LFS Details

  • SHA256: 26e07361a25183e4674c5fbf9470e2a50bd1a3c3e23e95b61a2023be826be2f0
  • Pointer size: 131 Bytes
  • Size of remote file: 461 kB
images/trevor_3.jpg ADDED

Git LFS Details

  • SHA256: 27600d7a1eaf217c4005105ff34b8547a36ae684283bd4ebe952e7920334dae7
  • Pointer size: 132 Bytes
  • Size of remote file: 1.13 MB
images/trevor_4.jpg ADDED

Git LFS Details

  • SHA256: 4c9e1b9bd859d4e005bb50c8898eb6665b7d9f14b05f2c573f975c7de3b0c923
  • Pointer size: 131 Bytes
  • Size of remote file: 892 kB
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ diffusers==0.10.2
2
+ transformers
3
+ scipy
4
+ accelerate
5
+ torchvision
6
+ --extra-index-url https://download.pytorch.org/whl/cu113
utils.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import torch
4
+ from PIL import Image, ImageOps
5
+ from torchvision.transforms import ToPILImage, ToTensor
6
+ totensor = ToTensor()
7
+ topil = ToPILImage()
8
+
9
+
10
+
11
+ def resize_and_crop(img, size, crop_type="center"):
12
+ '''Resize and crop the image to the given size.'''
13
+ if crop_type == "top":
14
+ center = (0, 0)
15
+ elif crop_type == "center":
16
+ center = (0.5, 0.5)
17
+ else:
18
+ raise ValueError
19
+
20
+ resize = list(size)
21
+ if size[0] is None:
22
+ resize[0] = img.size[0]
23
+ if size[1] is None:
24
+ resize[1] = img.size[1]
25
+ return ImageOps.fit(img, resize, centering=center)
26
+
27
+
28
+ def recover_image(image, init_image, mask, background=False):
29
+ image = totensor(image)
30
+ mask = totensor(mask)[0]
31
+ init_image = totensor(init_image)
32
+
33
+ if background:
34
+ result = mask * init_image + (1 - mask) * image
35
+ else:
36
+ result = mask * image + (1 - mask) * init_image
37
+ return topil(result)
38
+
39
+
40
+ def preprocess(image):
41
+ w, h = image.size
42
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
43
+ image = image.resize((w, h), resample=Image.LANCZOS)
44
+ image = np.array(image).astype(np.float32) / 255.0
45
+ image = image[None].transpose(0, 3, 1, 2)
46
+ image = torch.from_numpy(image)
47
+ return 2.0 * image - 1.0
48
+
49
+
50
+ def prepare_mask_and_masked_image(image, mask):
51
+
52
+ image = np.array(image.convert("RGB"))
53
+ image = image[None].transpose(0, 3, 1, 2)
54
+ image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
55
+
56
+ mask = np.array(mask.convert("L"))
57
+ mask = mask.astype(np.float32) / 255.0
58
+ mask = mask[None, None]
59
+ mask[mask < 0.5] = 0
60
+ mask[mask >= 0.5] = 1
61
+ mask = torch.from_numpy(mask)
62
+
63
+ masked_image = image * (mask < 0.5)
64
+
65
+ return mask, masked_image