File size: 5,166 Bytes
49bceed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import random
from typing import Union

import albumentations as A
import cv2
import numpy as np
import pytorch_lightning as pl
import streamlit as st
import torch
from albumentations.pytorch import ToTensorV2

from . import configs


def generate_empty_space(total_space: int = 1) -> None:
    for _ in range(total_space):
        st.write("")


def set_page_config(page_title: str, page_icon: str) -> None:
    st.set_page_config(
        page_title=f"{configs.APP_NAME} - {page_title}",
        page_icon="πŸš€",
        layout="wide",
        initial_sidebar_state="collapsed",
    )
    st.title(f"{page_icon} {page_title}")
    st.caption(f"Created by: {configs.AUTHOR_NAME}")


def set_seed(seed: int = configs.RANDOM_SEED) -> None:
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    np.random.seed(seed)
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    pl.seed_everything(seed)


def euclidean_distance_normalized(x: np.ndarray, y: np.ndarray) -> np.float32:
    distance = np.linalg.norm(x - y)
    normalized_distance = 1 / (1 + distance)
    return normalized_distance


def image_augmentations(image_size: int = configs.SIZE_IMAGES) -> A.Compose:
    return A.Compose(
        (
            A.Resize(image_size, image_size),
            A.Normalize(
                mean=configs.NORMALIZE_IMAGE_MEAN, std=configs.NORMALIZE_IMAGE_STD
            ),
            ToTensorV2(),
        )
    )


def normalize_image_to_zero_one(x: np.ndarray) -> np.ndarray:
    return np.array((x - np.min(x)) / (np.max(x) - np.min(x)))


def reshape_transform(

    tensor: torch.Tensor, height: int = 14, width: int = 14

) -> torch.Tensor:
    result = tensor[:, 1:, :].reshape(tensor.size(0), height, width, tensor.size(2))
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def get_device() -> torch.device:
    return torch.device("cuda" if torch.cuda.is_available() else "cpu")


def get_default_images() -> tuple:
    return_images = []
    class_characters = os.listdir(configs.DEFAULT_IMAGES_PATH)
    for cls in class_characters:
        images_characters = os.listdir(os.path.join(configs.DEFAULT_IMAGES_PATH, cls))
        for image in images_characters:
            return_images.append(
                os.path.join(configs.DEFAULT_IMAGES_PATH, cls, image).replace("\\", "/")
            )

    return tuple(return_images)


def check_data_type_variable(data, data_type):
    if not isinstance(data, data_type):
        raise TypeError(f"Data must be {data_type} type")


def get_most_salient_object(image: np.ndarray) -> np.ndarray:
    saliency = cv2.saliency.StaticSaliencyFineGrained_create()
    _, saliency_map = saliency.computeSaliency(image)
    saliency_map = (saliency_map * 255).astype("uint8")
    thresh_map = cv2.threshold(
        saliency_map, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU
    )[1]
    return thresh_map


def margin_confidence(prob_dist: np.ndarray, sorted: bool = False) -> np.ndarray:
    if not sorted:
        prob_dist[::-1].sort()
    difference = prob_dist[0] - prob_dist[1]
    margin_conf = 1 - difference
    return margin_conf


def ratio_confidence(prob_dist: np.ndarray, sorted: bool = False) -> np.ndarray:
    if not sorted:
        prob_dist[::-1].sort()
    ratio_conf = prob_dist[1] / prob_dist[0]
    return ratio_conf


def least_confidence(prob_dist: np.ndarray, sorted: bool = False) -> np.ndarray:
    if sorted:
        simple_least_conf = prob_dist[0]
    else:
        simple_least_conf = np.nanmax(prob_dist)
    num_labels = float(prob_dist.size)
    normalized_least_conf = (1 - simple_least_conf) * (num_labels / (num_labels - 1))
    return normalized_least_conf


def entropy_score(prob_dist: np.ndarray) -> np.ndarray:
    log_probs = prob_dist * np.log2(prob_dist)
    raw_entropy = 0 - np.sum(log_probs)
    normalized_entropy = raw_entropy / np.log2(prob_dist.size)
    return normalized_entropy


def active_learning_uncertainty(prob_dist: np.ndarray) -> Union[np.ndarray, bool]:
    result_margin_confidence = margin_confidence(prob_dist)
    has_nan = np.isnan(result_margin_confidence).any()
    if has_nan:
        return False
    result_ratio_confidence = ratio_confidence(prob_dist)
    has_nan = np.isnan(result_ratio_confidence).any()
    if has_nan:
        return result_margin_confidence
    result_least_confidence = least_confidence(prob_dist)
    has_nan = np.isnan(result_least_confidence).any()
    if has_nan:
        return np.mean([result_margin_confidence, result_ratio_confidence])
    result_entropy_score = entropy_score(prob_dist)
    has_nan = np.isnan(result_entropy_score).any()
    if has_nan:
        return np.mean([result_margin_confidence, result_ratio_confidence, result_least_confidence])
    return np.mean([result_margin_confidence, result_ratio_confidence, result_least_confidence, result_entropy_score])