File size: 2,239 Bytes
49bceed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))

import time
from abc import ABC, abstractmethod

import numpy as np
import torch

from utils import configs
from utils.functional import check_data_type_variable, get_device, image_augmentations


class BaseModelImageEmbeddings(ABC):
    def __init__(

        self,

        name_model: str,

        freeze_model: bool,

        pretrained_model: bool,

        support_set_method: str,

    ):
        self.name_model = name_model
        self.freeze_model = freeze_model
        self.pretrained_model = pretrained_model
        self.support_set_method = support_set_method
        self.model = None
        self.device = get_device()

        self.check_arguments()

    def check_arguments(self):
        check_data_type_variable(self.name_model, str)
        check_data_type_variable(self.freeze_model, bool)
        check_data_type_variable(self.pretrained_model, bool)
        check_data_type_variable(self.support_set_method, str)

        old_name_model = self.name_model
        if self.name_model == configs.CLIP_NAME_MODEL:
            old_name_model = self.name_model
            self.name_model = "clip"
        if self.name_model not in tuple(configs.NAME_MODELS.keys()):
            raise ValueError(f"Model {self.name_model} not supported")
        if self.support_set_method not in configs.SUPPORT_SET_METHODS:
            raise ValueError(
                f"Support set method {self.support_set_method} not supported"
            )
        self.name_model = old_name_model

    @abstractmethod
    def init_model(self):
        pass

    def get_embeddings(self, image: np.ndarray) -> dict:
        image_input = image_augmentations()(image=image)["image"]
        image_input = image_input.unsqueeze(axis=0).to(self.device)
        with torch.no_grad():
            start_time = time.perf_counter()
            embeddings = self.model(image_input)
            end_time = time.perf_counter() - start_time

        embeddings = embeddings.detach().cpu().numpy()
        return {
            "embeddings": embeddings,
            "inference_time": end_time,
        }