Spaces:
Runtime error
Runtime error
File size: 8,772 Bytes
48f4d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import random
import re
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline, set_seed
from utils.image2text import git_image2text, w14_image2text, clip_image2text
from utils.singleton import Singleton
from utils.translate import en2zh as translate_en2zh
from utils.translate import zh2en as translate_zh2en
from utils.exif import get_image_info
device = "cuda" if torch.cuda.is_available() else "cpu"
@Singleton
class Models(object):
def __getattr__(self, item):
if item in self.__dict__:
return getattr(self, item)
if item in ('big_model', 'big_processor'):
self.big_model, self.big_processor = self.load_image2text_model()
if item in ('prompter_model', 'prompter_tokenizer'):
self.prompter_model, self.prompter_tokenizer = self.load_prompter_model()
if item in ('text_pipe',):
self.text_pipe = self.load_text_generation_pipeline()
return getattr(self, item)
@classmethod
def load_text_generation_pipeline(cls):
return pipeline('text-generation', model='succinctly/text2image-prompt-generator')
@classmethod
def load_prompter_model(cls):
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return prompter_model, tokenizer
models = Models.instance()
def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
input_ids = models.prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
eos_id = models.prompter_tokenizer.eos_token_id
outputs = models.prompter_model.generate(
input_ids,
do_sample=False,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
eos_token_id=eos_id,
pad_token_id=eos_id,
length_penalty=length_penalty
)
output_texts = models.prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
result = []
for output_text in output_texts:
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
return "\n".join(result)
def image_generate_prompter(
bclip_text,
w14_text,
max_new_tokens=75,
num_beams=8,
num_return_sequences=8,
length_penalty=-1.0
):
result = generate_prompter(
bclip_text,
max_new_tokens,
num_beams,
num_return_sequences,
length_penalty
)
return "\n".join(["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0])
def text_generate(text_in_english):
seed = random.randint(100, 1000000)
set_seed(seed)
result = ""
for _ in range(6):
sequences = models.text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
list = []
for sequence in sequences:
line = sequence['generated_text'].strip()
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
(':', '-', '—')) is False:
list.append(line)
result = "\n".join(list)
result = re.sub('[^ ]+\.[^ ]+', '', result)
result = result.replace('<', '').replace('>', '')
if result != '':
break
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
with gr.Blocks(title="Prompt生成器") as block:
with gr.Column():
with gr.Tab('从图片中生成'):
with gr.Row():
input_image = gr.Image(type='pil')
exif_info = gr.HTML()
output_blip_or_clip = gr.Textbox(label='生成的 Prompt')
output_w14 = gr.Textbox(label='W14的 Prompt')
with gr.Accordion('W14', open=False):
w14_raw_output = gr.Textbox(label="Output (raw string)")
w14_booru_output = gr.Textbox(label="Output (booru string)")
w14_rating_output = gr.Label(label="Rating")
w14_characters_output = gr.Label(label="Output (characters)")
w14_tags_output = gr.Label(label="Output (tags)")
images_generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
with gr.Row():
img_exif_btn = gr.Button('EXIF')
img_blip_btn = gr.Button('BLIP图片转描述')
img_w14_btn = gr.Button('W14图片转描述')
img_clip_btn = gr.Button('CLIP图片转描述')
img_prompter_btn = gr.Button('SD优化')
with gr.Tab('文本生成'):
with gr.Row():
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
output = gr.Textbox(lines=6, label='瞎编的 Prompt')
output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
with gr.Row():
translate_btn = gr.Button('翻译')
generate_prompter_btn = gr.Button('SD优化')
gpt_btn = gr.Button('瞎编')
with gr.Tab('参数设置'):
with gr.Accordion('SD优化参数', open=True):
max_new_tokens = gr.Slider(1, 512, 100, label='max_new_tokens', step=1)
nub_beams = gr.Slider(1, 30, 6, label='num_beams', step=1)
num_return_sequences = gr.Slider(1, 30, 6, label='num_return_sequences', step=1)
length_penalty = gr.Slider(-1.0, 1.0, -1.0, label='length_penalty')
with gr.Accordion('BLIP参数', open=True):
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
with gr.Accordion('CLIP参数', open=True):
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', )
with gr.Accordion('WD14参数', open=True):
image2text_model = gr.Radio(
[
"SwinV2",
"ConvNext",
"ConvNextV2",
"ViT",
],
value="ConvNextV2",
label="Model"
)
general_threshold = gr.Slider(
0,
1,
step=0.05,
value=0.35,
label="General Tags Threshold",
)
character_threshold = gr.Slider(
0,
1,
step=0.05,
value=0.85,
label="Character Tags Threshold",
)
img_prompter_btn.click(
fn=image_generate_prompter,
inputs=[output_blip_or_clip, output_w14, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
outputs=images_generate_prompter_output,
)
translate_btn.click(
fn=translate_zh2en,
inputs=input_text,
outputs=translate_output
)
generate_prompter_btn.click(
fn=generate_prompter,
inputs=[translate_output, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
outputs=generate_prompter_output
)
gpt_btn.click(
fn=text_generate,
inputs=translate_output,
outputs=[output, output_zh]
)
img_w14_btn.click(
fn=w14_image2text,
inputs=[input_image, image2text_model, general_threshold, character_threshold],
outputs=[
output_w14,
w14_raw_output,
w14_booru_output,
w14_rating_output,
w14_characters_output,
w14_tags_output
]
)
img_blip_btn.click(
fn=git_image2text,
inputs=[input_image, blip_max_length],
outputs=output_blip_or_clip
)
img_clip_btn.click(
fn=clip_image2text,
inputs=[input_image, clip_mode_type, clip_model_name],
outputs=output_blip_or_clip
)
img_exif_btn.click(
fn=get_image_info,
inputs=input_image,
outputs=exif_info
)
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|