File size: 8,772 Bytes
48f4d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import random
import re

import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline, set_seed

from utils.image2text import git_image2text, w14_image2text, clip_image2text
from utils.singleton import Singleton
from utils.translate import en2zh as translate_en2zh
from utils.translate import zh2en as translate_zh2en
from utils.exif import get_image_info

device = "cuda" if torch.cuda.is_available() else "cpu"


@Singleton
class Models(object):

    def __getattr__(self, item):
        if item in self.__dict__:
            return getattr(self, item)

        if item in ('big_model', 'big_processor'):
            self.big_model, self.big_processor = self.load_image2text_model()

        if item in ('prompter_model', 'prompter_tokenizer'):
            self.prompter_model, self.prompter_tokenizer = self.load_prompter_model()

        if item in ('text_pipe',):
            self.text_pipe = self.load_text_generation_pipeline()

        return getattr(self, item)

    @classmethod
    def load_text_generation_pipeline(cls):
        return pipeline('text-generation', model='succinctly/text2image-prompt-generator')

    @classmethod
    def load_prompter_model(cls):
        prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"
        return prompter_model, tokenizer


models = Models.instance()


def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
    input_ids = models.prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
    eos_id = models.prompter_tokenizer.eos_token_id
    outputs = models.prompter_model.generate(
        input_ids,
        do_sample=False,
        max_new_tokens=max_new_tokens,
        num_beams=num_beams,
        num_return_sequences=num_return_sequences,
        eos_token_id=eos_id,
        pad_token_id=eos_id,
        length_penalty=length_penalty
    )
    output_texts = models.prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
    result = []
    for output_text in output_texts:
        result.append(output_text.replace(plain_text + " Rephrase:", "").strip())

    return "\n".join(result)


def image_generate_prompter(
        bclip_text,
        w14_text,
        max_new_tokens=75,
        num_beams=8,
        num_return_sequences=8,
        length_penalty=-1.0
):
    result = generate_prompter(
        bclip_text,
        max_new_tokens,
        num_beams,
        num_return_sequences,
        length_penalty
    )
    return "\n".join(["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0])


def text_generate(text_in_english):
    seed = random.randint(100, 1000000)
    set_seed(seed)

    result = ""
    for _ in range(6):
        sequences = models.text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
        list = []
        for sequence in sequences:
            line = sequence['generated_text'].strip()
            if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
                    (':', '-', '—')) is False:
                list.append(line)

        result = "\n".join(list)
        result = re.sub('[^ ]+\.[^ ]+', '', result)
        result = result.replace('<', '').replace('>', '')
        if result != '':
            break
    return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)


with gr.Blocks(title="Prompt生成器") as block:
    with gr.Column():

        with gr.Tab('从图片中生成'):
            with gr.Row():
                input_image = gr.Image(type='pil')
                exif_info = gr.HTML()
            output_blip_or_clip = gr.Textbox(label='生成的 Prompt')
            output_w14 = gr.Textbox(label='W14的 Prompt')

            with gr.Accordion('W14', open=False):
                w14_raw_output = gr.Textbox(label="Output (raw string)")
                w14_booru_output = gr.Textbox(label="Output (booru string)")
                w14_rating_output = gr.Label(label="Rating")
                w14_characters_output = gr.Label(label="Output (characters)")
                w14_tags_output = gr.Label(label="Output (tags)")
            images_generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
            with gr.Row():
                img_exif_btn = gr.Button('EXIF')
                img_blip_btn = gr.Button('BLIP图片转描述')
                img_w14_btn = gr.Button('W14图片转描述')
                img_clip_btn = gr.Button('CLIP图片转描述')
                img_prompter_btn = gr.Button('SD优化')

        with gr.Tab('文本生成'):
            with gr.Row():
                input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
                translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')

            generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')

            output = gr.Textbox(lines=6, label='瞎编的 Prompt')
            output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
            with gr.Row():
                translate_btn = gr.Button('翻译')
                generate_prompter_btn = gr.Button('SD优化')
                gpt_btn = gr.Button('瞎编')
        with gr.Tab('参数设置'):
            with gr.Accordion('SD优化参数', open=True):
                max_new_tokens = gr.Slider(1, 512, 100, label='max_new_tokens', step=1)
                nub_beams = gr.Slider(1, 30, 6, label='num_beams', step=1)
                num_return_sequences = gr.Slider(1, 30, 6, label='num_return_sequences', step=1)
                length_penalty = gr.Slider(-1.0, 1.0, -1.0, label='length_penalty')
            with gr.Accordion('BLIP参数', open=True):
                blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
            with gr.Accordion('CLIP参数', open=True):
                clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
                clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', )
            with gr.Accordion('WD14参数', open=True):
                image2text_model = gr.Radio(
                    [
                        "SwinV2",
                        "ConvNext",
                        "ConvNextV2",
                        "ViT",
                    ],
                    value="ConvNextV2",
                    label="Model"
                )
                general_threshold = gr.Slider(
                    0,
                    1,
                    step=0.05,
                    value=0.35,
                    label="General Tags Threshold",
                )
                character_threshold = gr.Slider(
                    0,
                    1,
                    step=0.05,
                    value=0.85,
                    label="Character Tags Threshold",
                )
    img_prompter_btn.click(
        fn=image_generate_prompter,
        inputs=[output_blip_or_clip, output_w14, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
        outputs=images_generate_prompter_output,
    )
    translate_btn.click(
        fn=translate_zh2en,
        inputs=input_text,
        outputs=translate_output
    )
    generate_prompter_btn.click(
        fn=generate_prompter,
        inputs=[translate_output, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
        outputs=generate_prompter_output
    )
    gpt_btn.click(
        fn=text_generate,
        inputs=translate_output,
        outputs=[output, output_zh]
    )
    img_w14_btn.click(
        fn=w14_image2text,
        inputs=[input_image, image2text_model, general_threshold, character_threshold],
        outputs=[
            output_w14,
            w14_raw_output,
            w14_booru_output,
            w14_rating_output,
            w14_characters_output,
            w14_tags_output
        ]
    )

    img_blip_btn.click(
        fn=git_image2text,
        inputs=[input_image, blip_max_length],
        outputs=output_blip_or_clip
    )
    img_clip_btn.click(
        fn=clip_image2text,
        inputs=[input_image, clip_mode_type, clip_model_name],
        outputs=output_blip_or_clip
    )

    img_exif_btn.click(
        fn=get_image_info,
        inputs=input_image,
        outputs=exif_info
    )
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')