Spaces:
Runtime error
Runtime error
import random | |
import re | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import pipeline, set_seed | |
from utils.image2text import git_image2text, w14_image2text, clip_image2text | |
from utils.singleton import Singleton | |
from utils.translate import en2zh as translate_en2zh | |
from utils.translate import zh2en as translate_zh2en | |
from utils.exif import get_image_info | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
class Models(object): | |
def __getattr__(self, item): | |
if item in self.__dict__: | |
return getattr(self, item) | |
if item in ('big_model', 'big_processor'): | |
self.big_model, self.big_processor = self.load_image2text_model() | |
if item in ('prompter_model', 'prompter_tokenizer'): | |
self.prompter_model, self.prompter_tokenizer = self.load_prompter_model() | |
if item in ('text_pipe',): | |
self.text_pipe = self.load_text_generation_pipeline() | |
return getattr(self, item) | |
def load_text_generation_pipeline(cls): | |
return pipeline('text-generation', model='succinctly/text2image-prompt-generator') | |
def load_prompter_model(cls): | |
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") | |
tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
return prompter_model, tokenizer | |
models = Models.instance() | |
def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0): | |
input_ids = models.prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids | |
eos_id = models.prompter_tokenizer.eos_token_id | |
outputs = models.prompter_model.generate( | |
input_ids, | |
do_sample=False, | |
max_new_tokens=max_new_tokens, | |
num_beams=num_beams, | |
num_return_sequences=num_return_sequences, | |
eos_token_id=eos_id, | |
pad_token_id=eos_id, | |
length_penalty=length_penalty | |
) | |
output_texts = models.prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
result = [] | |
for output_text in output_texts: | |
result.append(output_text.replace(plain_text + " Rephrase:", "").strip()) | |
return "\n".join(result) | |
def image_generate_prompter( | |
bclip_text, | |
w14_text, | |
max_new_tokens=75, | |
num_beams=8, | |
num_return_sequences=8, | |
length_penalty=-1.0 | |
): | |
result = generate_prompter( | |
bclip_text, | |
max_new_tokens, | |
num_beams, | |
num_return_sequences, | |
length_penalty | |
) | |
return "\n".join(["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0]) | |
def text_generate(text_in_english): | |
seed = random.randint(100, 1000000) | |
set_seed(seed) | |
result = "" | |
for _ in range(6): | |
sequences = models.text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8) | |
list = [] | |
for sequence in sequences: | |
line = sequence['generated_text'].strip() | |
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith( | |
(':', '-', '—')) is False: | |
list.append(line) | |
result = "\n".join(list) | |
result = re.sub('[^ ]+\.[^ ]+', '', result) | |
result = result.replace('<', '').replace('>', '') | |
if result != '': | |
break | |
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0) | |
with gr.Blocks(title="Prompt生成器") as block: | |
with gr.Column(): | |
with gr.Tab('从图片中生成'): | |
with gr.Row(): | |
input_image = gr.Image(type='pil') | |
exif_info = gr.HTML() | |
output_blip_or_clip = gr.Textbox(label='生成的 Prompt') | |
output_w14 = gr.Textbox(label='W14的 Prompt') | |
with gr.Accordion('W14', open=False): | |
w14_raw_output = gr.Textbox(label="Output (raw string)") | |
w14_booru_output = gr.Textbox(label="Output (booru string)") | |
w14_rating_output = gr.Label(label="Rating") | |
w14_characters_output = gr.Label(label="Output (characters)") | |
w14_tags_output = gr.Label(label="Output (tags)") | |
images_generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt') | |
with gr.Row(): | |
img_exif_btn = gr.Button('EXIF') | |
img_blip_btn = gr.Button('BLIP图片转描述') | |
img_w14_btn = gr.Button('W14图片转描述') | |
img_clip_btn = gr.Button('CLIP图片转描述') | |
img_prompter_btn = gr.Button('SD优化') | |
with gr.Tab('文本生成'): | |
with gr.Row(): | |
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...') | |
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)') | |
generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt') | |
output = gr.Textbox(lines=6, label='瞎编的 Prompt') | |
output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)') | |
with gr.Row(): | |
translate_btn = gr.Button('翻译') | |
generate_prompter_btn = gr.Button('SD优化') | |
gpt_btn = gr.Button('瞎编') | |
with gr.Tab('参数设置'): | |
with gr.Accordion('SD优化参数', open=True): | |
max_new_tokens = gr.Slider(1, 512, 100, label='max_new_tokens', step=1) | |
nub_beams = gr.Slider(1, 30, 6, label='num_beams', step=1) | |
num_return_sequences = gr.Slider(1, 30, 6, label='num_return_sequences', step=1) | |
length_penalty = gr.Slider(-1.0, 1.0, -1.0, label='length_penalty') | |
with gr.Accordion('BLIP参数', open=True): | |
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1) | |
with gr.Accordion('CLIP参数', open=True): | |
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type') | |
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', ) | |
with gr.Accordion('WD14参数', open=True): | |
image2text_model = gr.Radio( | |
[ | |
"SwinV2", | |
"ConvNext", | |
"ConvNextV2", | |
"ViT", | |
], | |
value="ConvNextV2", | |
label="Model" | |
) | |
general_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.35, | |
label="General Tags Threshold", | |
) | |
character_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.85, | |
label="Character Tags Threshold", | |
) | |
img_prompter_btn.click( | |
fn=image_generate_prompter, | |
inputs=[output_blip_or_clip, output_w14, max_new_tokens, nub_beams, num_return_sequences, length_penalty], | |
outputs=images_generate_prompter_output, | |
) | |
translate_btn.click( | |
fn=translate_zh2en, | |
inputs=input_text, | |
outputs=translate_output | |
) | |
generate_prompter_btn.click( | |
fn=generate_prompter, | |
inputs=[translate_output, max_new_tokens, nub_beams, num_return_sequences, length_penalty], | |
outputs=generate_prompter_output | |
) | |
gpt_btn.click( | |
fn=text_generate, | |
inputs=translate_output, | |
outputs=[output, output_zh] | |
) | |
img_w14_btn.click( | |
fn=w14_image2text, | |
inputs=[input_image, image2text_model, general_threshold, character_threshold], | |
outputs=[ | |
output_w14, | |
w14_raw_output, | |
w14_booru_output, | |
w14_rating_output, | |
w14_characters_output, | |
w14_tags_output | |
] | |
) | |
img_blip_btn.click( | |
fn=git_image2text, | |
inputs=[input_image, blip_max_length], | |
outputs=output_blip_or_clip | |
) | |
img_clip_btn.click( | |
fn=clip_image2text, | |
inputs=[input_image, clip_mode_type, clip_model_name], | |
outputs=output_blip_or_clip | |
) | |
img_exif_btn.click( | |
fn=get_image_info, | |
inputs=input_image, | |
outputs=exif_info | |
) | |
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0') | |