Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import mdtex2html | |
from utils.exif import get_image_info | |
from utils.generator import generate_prompt | |
from utils.image2text import git_image2text, w14_image2text, clip_image2text | |
from utils.translate import en2zh as translate_en2zh | |
from utils.translate import zh2en as translate_zh2en | |
from utils.chatglm import chat2text | |
from utils.chatglm import models as chatglm_models | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def text_generate_prompter( | |
plain_text, | |
model_name='microsoft', | |
prompt_min_length=60, | |
prompt_max_length=75, | |
prompt_num_return_sequences=8, | |
): | |
result = generate_prompt( | |
plain_text=plain_text, | |
model_name=model_name, | |
min_length=prompt_min_length, | |
max_length=prompt_max_length, | |
num_return_sequences=prompt_num_return_sequences | |
) | |
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0) | |
def image_generate_prompter( | |
bclip_text, | |
w14_text, | |
model_name='microsoft', | |
prompt_min_length=60, | |
prompt_max_length=75, | |
prompt_num_return_sequences=8, | |
): | |
result = generate_prompt( | |
plain_text=bclip_text, | |
model_name=model_name, | |
min_length=prompt_min_length, | |
max_length=prompt_max_length, | |
num_return_sequences=prompt_num_return_sequences | |
) | |
prompter_list = ["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0] | |
prompter_zh_list = [ | |
"{},{}".format(translate_en2zh(line.strip()), translate_en2zh(w14_text.strip())) for line in | |
result.split("\n") if len(line) > 0 | |
] | |
return "\n".join(prompter_list), "\n".join(prompter_zh_list) | |
def translate_input(text: str, chatglm_text: str) -> str: | |
if chatglm_text is not None and len(chatglm_text) > 0: | |
return translate_zh2en(chatglm_text) | |
return translate_zh2en(text) | |
with gr.Blocks(title="Prompt生成器") as block: | |
with gr.Column(): | |
with gr.Tab('Chat'): | |
def revise(history, latest_message): | |
history[-1] = (history[-1][0], latest_message) | |
return history, '' | |
def revoke(history): | |
if len(history) >= 1: | |
history.pop() | |
return history | |
def interrupt(allow_generate): | |
allow_generate[0] = False | |
def reset_state(): | |
return [], [] | |
with gr.Row(): | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot(elem_id="chat-box", show_label=False).style(height=800) | |
with gr.Column(scale=1): | |
with gr.Row(): | |
max_length = gr.Slider(32, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) | |
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01, label="Top P", interactive=True) | |
temperature = gr.Slider(0.01, 5, value=0.95, step=0.01, label="Temperature", interactive=True) | |
with gr.Row(): | |
query = gr.Textbox(show_label=False, placeholder="Prompts", lines=4).style(container=False) | |
generate_button = gr.Button("生成") | |
with gr.Row(): | |
continue_message = gr.Textbox( | |
show_label=False, placeholder="Continue message", lines=2).style(container=False) | |
continue_btn = gr.Button("续写") | |
revise_message = gr.Textbox( | |
show_label=False, placeholder="Revise message", lines=2).style(container=False) | |
revise_btn = gr.Button("修订") | |
revoke_btn = gr.Button("撤回") | |
interrupt_btn = gr.Button("终止生成") | |
reset_btn = gr.Button("清空") | |
history = gr.State([]) | |
allow_generate = gr.State([True]) | |
blank_input = gr.State("") | |
reset_btn.click(reset_state, outputs=[chatbot, history], show_progress=True) | |
generate_button.click( | |
chatglm_models.chatglm.predict_continue, | |
inputs=[query, blank_input, max_length, top_p, temperature, allow_generate, history], | |
outputs=[chatbot, query] | |
) | |
revise_btn.click(revise, inputs=[history, revise_message], outputs=[chatbot, revise_message]) | |
revoke_btn.click(revoke, inputs=[history], outputs=[chatbot]) | |
continue_btn.click( | |
chatglm_models.chatglm.predict_continue, | |
inputs=[query, continue_message, max_length, top_p, temperature, allow_generate, history], | |
outputs=[chatbot, query, continue_message] | |
) | |
interrupt_btn.click(interrupt, inputs=[allow_generate]) | |
with gr.Tab('文本生成'): | |
with gr.Row(): | |
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...') | |
chatglm_output = gr.Textbox(lines=6, label='ChatGLM', placeholder='在此输入内容...') | |
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)') | |
output = gr.Textbox(lines=6, label='优化的 Prompt') | |
output_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)') | |
with gr.Row(): | |
chatglm_btn = gr.Button('召唤ChatGLM') | |
translate_btn = gr.Button('翻译') | |
generate_prompter_btn = gr.Button('优化Prompt') | |
with gr.Tab('从图片中生成'): | |
with gr.Row(): | |
input_image = gr.Image(type='pil') | |
exif_info = gr.HTML() | |
output_blip_or_clip = gr.Textbox(label='生成的 Prompt', lines=4) | |
output_w14 = gr.Textbox(label='W14的 Prompt', lines=4) | |
with gr.Accordion('W14', open=False): | |
w14_raw_output = gr.Textbox(label="Output (raw string)") | |
w14_booru_output = gr.Textbox(label="Output (booru string)") | |
w14_rating_output = gr.Label(label="Rating") | |
w14_characters_output = gr.Label(label="Output (characters)") | |
w14_tags_output = gr.Label(label="Output (tags)") | |
output_img_prompter = gr.Textbox(lines=6, label='优化的 Prompt') | |
output_img_prompter_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)') | |
with gr.Row(): | |
img_exif_btn = gr.Button('EXIF') | |
img_blip_btn = gr.Button('BLIP图片转描述') | |
img_w14_btn = gr.Button('W14图片转描述') | |
img_clip_btn = gr.Button('CLIP图片转描述') | |
img_prompter_btn = gr.Button('优化Prompt') | |
with gr.Tab('参数设置'): | |
with gr.Accordion('Prompt优化参数', open=True): | |
prompt_mode_name = gr.Radio( | |
[ | |
'microsoft', | |
'mj', | |
'gpt2_650k', | |
'gpt_neo_125m', | |
], | |
value='gpt2_650k', | |
label='model_name' | |
) | |
prompt_min_length = gr.Slider(1, 512, 100, label='min_length', step=1) | |
prompt_max_length = gr.Slider(1, 512, 200, label='max_length', step=1) | |
prompt_num_return_sequences = gr.Slider(1, 30, 8, label='num_return_sequences', step=1) | |
with gr.Accordion('BLIP参数', open=True): | |
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1) | |
with gr.Accordion('CLIP参数', open=True): | |
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type') | |
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', label='model_name') | |
with gr.Accordion('WD14参数', open=True): | |
image2text_model = gr.Radio( | |
[ | |
"SwinV2", | |
"ConvNext", | |
"ConvNextV2", | |
"ViT", | |
], | |
value="ConvNextV2", | |
label="Model" | |
) | |
general_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.35, | |
label="General Tags Threshold", | |
) | |
character_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.85, | |
label="Character Tags Threshold", | |
) | |
img_prompter_btn.click( | |
fn=image_generate_prompter, | |
inputs=[ | |
output_blip_or_clip, | |
output_w14, | |
prompt_mode_name, | |
prompt_min_length, | |
prompt_max_length, | |
prompt_num_return_sequences, | |
], | |
outputs=[output_img_prompter, output_img_prompter_zh] | |
) | |
chatglm_btn.click( | |
fn=chatglm_models.chatglm.generator_image_text, | |
inputs=input_text, | |
outputs=chatglm_output, | |
) | |
translate_btn.click( | |
fn=translate_input, | |
inputs=[input_text, chatglm_output], | |
outputs=translate_output | |
) | |
generate_prompter_btn.click( | |
fn=text_generate_prompter, | |
inputs=[ | |
translate_output, | |
prompt_mode_name, | |
prompt_min_length, | |
prompt_max_length, | |
prompt_num_return_sequences, | |
], | |
outputs=[output, output_zh] | |
) | |
img_w14_btn.click( | |
fn=w14_image2text, | |
inputs=[input_image, image2text_model, general_threshold, character_threshold], | |
outputs=[ | |
output_w14, | |
w14_raw_output, | |
w14_booru_output, | |
w14_rating_output, | |
w14_characters_output, | |
w14_tags_output | |
] | |
) | |
img_blip_btn.click( | |
fn=git_image2text, | |
inputs=[input_image, blip_max_length], | |
outputs=output_blip_or_clip | |
) | |
img_clip_btn.click( | |
fn=clip_image2text, | |
inputs=[input_image, clip_mode_type, clip_model_name], | |
outputs=output_blip_or_clip | |
) | |
img_exif_btn.click( | |
fn=get_image_info, | |
inputs=input_image, | |
outputs=exif_info | |
) | |
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0') | |