import gradio as gr import torch import mdtex2html from utils.exif import get_image_info from utils.generator import generate_prompt from utils.image2text import git_image2text, w14_image2text, clip_image2text from utils.translate import en2zh as translate_en2zh from utils.translate import zh2en as translate_zh2en from utils.chatglm import chat2text from utils.chatglm import models as chatglm_models device = "cuda" if torch.cuda.is_available() else "cpu" def text_generate_prompter( plain_text, model_name='microsoft', prompt_min_length=60, prompt_max_length=75, prompt_num_return_sequences=8, ): result = generate_prompt( plain_text=plain_text, model_name=model_name, min_length=prompt_min_length, max_length=prompt_max_length, num_return_sequences=prompt_num_return_sequences ) return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0) def image_generate_prompter( bclip_text, w14_text, model_name='microsoft', prompt_min_length=60, prompt_max_length=75, prompt_num_return_sequences=8, ): result = generate_prompt( plain_text=bclip_text, model_name=model_name, min_length=prompt_min_length, max_length=prompt_max_length, num_return_sequences=prompt_num_return_sequences ) prompter_list = ["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0] prompter_zh_list = [ "{},{}".format(translate_en2zh(line.strip()), translate_en2zh(w14_text.strip())) for line in result.split("\n") if len(line) > 0 ] return "\n".join(prompter_list), "\n".join(prompter_zh_list) def translate_input(text: str, chatglm_text: str) -> str: if chatglm_text is not None and len(chatglm_text) > 0: return translate_zh2en(chatglm_text) return translate_zh2en(text) with gr.Blocks(title="Prompt生成器") as block: with gr.Column(): with gr.Tab('Chat'): def revise(history, latest_message): history[-1] = (history[-1][0], latest_message) return history, '' def revoke(history): if len(history) >= 1: history.pop() return history def interrupt(allow_generate): allow_generate[0] = False def reset_state(): return [], [] with gr.Row(): with gr.Column(scale=4): chatbot = gr.Chatbot(elem_id="chat-box", show_label=False).style(height=800) with gr.Column(scale=1): with gr.Row(): max_length = gr.Slider(32, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) top_p = gr.Slider(0.01, 1, value=0.7, step=0.01, label="Top P", interactive=True) temperature = gr.Slider(0.01, 5, value=0.95, step=0.01, label="Temperature", interactive=True) with gr.Row(): query = gr.Textbox(show_label=False, placeholder="Prompts", lines=4).style(container=False) generate_button = gr.Button("生成") with gr.Row(): continue_message = gr.Textbox( show_label=False, placeholder="Continue message", lines=2).style(container=False) continue_btn = gr.Button("续写") revise_message = gr.Textbox( show_label=False, placeholder="Revise message", lines=2).style(container=False) revise_btn = gr.Button("修订") revoke_btn = gr.Button("撤回") interrupt_btn = gr.Button("终止生成") reset_btn = gr.Button("清空") history = gr.State([]) allow_generate = gr.State([True]) blank_input = gr.State("") reset_btn.click(reset_state, outputs=[chatbot, history], show_progress=True) generate_button.click( chatglm_models.chatglm.predict_continue, inputs=[query, blank_input, max_length, top_p, temperature, allow_generate, history], outputs=[chatbot, query] ) revise_btn.click(revise, inputs=[history, revise_message], outputs=[chatbot, revise_message]) revoke_btn.click(revoke, inputs=[history], outputs=[chatbot]) continue_btn.click( chatglm_models.chatglm.predict_continue, inputs=[query, continue_message, max_length, top_p, temperature, allow_generate, history], outputs=[chatbot, query, continue_message] ) interrupt_btn.click(interrupt, inputs=[allow_generate]) with gr.Tab('文本生成'): with gr.Row(): input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...') chatglm_output = gr.Textbox(lines=6, label='ChatGLM', placeholder='在此输入内容...') translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)') output = gr.Textbox(lines=6, label='优化的 Prompt') output_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)') with gr.Row(): chatglm_btn = gr.Button('召唤ChatGLM') translate_btn = gr.Button('翻译') generate_prompter_btn = gr.Button('优化Prompt') with gr.Tab('从图片中生成'): with gr.Row(): input_image = gr.Image(type='pil') exif_info = gr.HTML() output_blip_or_clip = gr.Textbox(label='生成的 Prompt', lines=4) output_w14 = gr.Textbox(label='W14的 Prompt', lines=4) with gr.Accordion('W14', open=False): w14_raw_output = gr.Textbox(label="Output (raw string)") w14_booru_output = gr.Textbox(label="Output (booru string)") w14_rating_output = gr.Label(label="Rating") w14_characters_output = gr.Label(label="Output (characters)") w14_tags_output = gr.Label(label="Output (tags)") output_img_prompter = gr.Textbox(lines=6, label='优化的 Prompt') output_img_prompter_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)') with gr.Row(): img_exif_btn = gr.Button('EXIF') img_blip_btn = gr.Button('BLIP图片转描述') img_w14_btn = gr.Button('W14图片转描述') img_clip_btn = gr.Button('CLIP图片转描述') img_prompter_btn = gr.Button('优化Prompt') with gr.Tab('参数设置'): with gr.Accordion('Prompt优化参数', open=True): prompt_mode_name = gr.Radio( [ 'microsoft', 'mj', 'gpt2_650k', 'gpt_neo_125m', ], value='gpt2_650k', label='model_name' ) prompt_min_length = gr.Slider(1, 512, 100, label='min_length', step=1) prompt_max_length = gr.Slider(1, 512, 200, label='max_length', step=1) prompt_num_return_sequences = gr.Slider(1, 30, 8, label='num_return_sequences', step=1) with gr.Accordion('BLIP参数', open=True): blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1) with gr.Accordion('CLIP参数', open=True): clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type') clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', label='model_name') with gr.Accordion('WD14参数', open=True): image2text_model = gr.Radio( [ "SwinV2", "ConvNext", "ConvNextV2", "ViT", ], value="ConvNextV2", label="Model" ) general_threshold = gr.Slider( 0, 1, step=0.05, value=0.35, label="General Tags Threshold", ) character_threshold = gr.Slider( 0, 1, step=0.05, value=0.85, label="Character Tags Threshold", ) img_prompter_btn.click( fn=image_generate_prompter, inputs=[ output_blip_or_clip, output_w14, prompt_mode_name, prompt_min_length, prompt_max_length, prompt_num_return_sequences, ], outputs=[output_img_prompter, output_img_prompter_zh] ) chatglm_btn.click( fn=chatglm_models.chatglm.generator_image_text, inputs=input_text, outputs=chatglm_output, ) translate_btn.click( fn=translate_input, inputs=[input_text, chatglm_output], outputs=translate_output ) generate_prompter_btn.click( fn=text_generate_prompter, inputs=[ translate_output, prompt_mode_name, prompt_min_length, prompt_max_length, prompt_num_return_sequences, ], outputs=[output, output_zh] ) img_w14_btn.click( fn=w14_image2text, inputs=[input_image, image2text_model, general_threshold, character_threshold], outputs=[ output_w14, w14_raw_output, w14_booru_output, w14_rating_output, w14_characters_output, w14_tags_output ] ) img_blip_btn.click( fn=git_image2text, inputs=[input_image, blip_max_length], outputs=output_blip_or_clip ) img_clip_btn.click( fn=clip_image2text, inputs=[input_image, clip_mode_type, clip_model_name], outputs=output_blip_or_clip ) img_exif_btn.click( fn=get_image_info, inputs=input_image, outputs=exif_info ) block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')