File size: 8,379 Bytes
b6bb35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e6672
b6bb35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import torch.nn.functional as F
from typing import Dict, Tuple, Optional
import network

class Predictor:
    """
    Wrapper for ScribblePrompt Unet model
    """
    def __init__(self, path: str, verbose: bool = False):
        
        self.verbose = verbose

        assert path.exists(), f"Checkpoint {path} does not exist"
        self.path = path

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.build_model()
        self.load()
        self.model.eval()
        self.to_device()

    def build_model(self):
        """
        Build the model
        """
        self.model = network.UNet(
            in_channels = 5,
            out_channels = 1,
            features = [192, 192, 192, 192],
        )

    def load(self):
        """
        Load the state of the model from a checkpoint file.
        """
        with (self.path).open("rb") as f:
            state = torch.load(f, map_location=self.device)
            self.model.load_state_dict(state, strict=True)
            if self.verbose:
                print(
                    f"Loaded checkpoint from {self.path} to {self.device}"
                )
        
    def to_device(self):
        """
        Move the model to cpu or gpu
        """
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model = self.model.to(self.device)

    def predict(self, prompts: Dict[str,any], img_features: Optional[torch.Tensor] = None, multimask_mode: bool = False):
        """
        Make predictions!

        Returns:
            mask (torch.Tensor): H x W
            img_features (torch.Tensor): B x 1 x H x W (for SAM models)
            low_res_mask (torch.Tensor): B x 1 x H x W logits
        """
        if self.verbose:
            print("point_coords", prompts.get("point_coords", None))
            print("point_labels", prompts.get("point_labels", None))
            print("box", prompts.get("box", None))
            print("img", prompts.get("img").shape, prompts.get("img").min(), prompts.get("img").max())
            if prompts.get("scribble") is not None:
                print("scribble", prompts.get("scribble", None).shape, prompts.get("scribble").min(), prompts.get("scribble").max())

        original_shape = prompts.get('img').shape[-2:]

        # Rescale to 128 x 128
        prompts = rescale_inputs(prompts)

        # Prepare inputs for ScribblePrompt unet (1 x 5 x 128 x 128)
        x = prepare_inputs(prompts).float()

        with torch.no_grad():
            yhat = self.model(x.to(self.device)).cpu()

        mask = torch.sigmoid(yhat)

        # Resize for app resolution
        mask = F.interpolate(mask, size=original_shape, mode='bilinear').squeeze()

        # mask: H x W, yhat: 1 x 1 x H x W
        return mask, None, yhat
        

# -----------------------------------------------------------------------------
# Prepare inputs
# -----------------------------------------------------------------------------

def rescale_inputs(inputs: Dict[str,any], res=128):
    """
    Rescale the inputs 
    """ 
    h,w = inputs['img'].shape[-2:]

    if h != res or w != res:
        
        inputs.update(dict(
            img = F.interpolate(inputs['img'], size=(res,res), mode='bilinear')
        ))

        if inputs.get('scribble') is not None:
            inputs.update({
                'scribble': F.interpolate(inputs['scribble'], size=(res,res), mode='bilinear') 
            })
        
        if inputs.get("box") is not None:
            boxes = inputs.get("box").clone()
            coords = boxes.reshape(-1, 2, 2)
            coords[..., 0] = coords[..., 0] * (res / w)
            coords[..., 1] = coords[..., 1] * (res / h)
            inputs.update({'box': coords.reshape(1, -1, 4).int()})
        
        if inputs.get("point_coords") is not None:
            coords = inputs.get("point_coords").clone()
            coords[..., 0] = coords[..., 0] * (res / w)
            coords[..., 1] = coords[..., 1] * (res / h)
            inputs.update({'point_coords': coords.int()})

    return inputs

def prepare_inputs(inputs: Dict[str,torch.Tensor], device = None) -> torch.Tensor:
    """
    Prepare inputs for ScribblePrompt Unet

    Returns: 
        x (torch.Tensor): B x 5 x H x W
    """
    img = inputs['img']
    if device is None:
        device = img.device

    img = img.to(device)
    shape = tuple(img.shape[-2:])
    
    if inputs.get("box") is not None:
        # Embed bounding box
        # Input: B x 1 x 4 
        # Output: B x 1 x H x W
        box_embed = bbox_shaded(inputs['box'], shape=shape, device=device)
    else:
        box_embed = torch.zeros(img.shape, device=device)

    if inputs.get("point_coords") is not None:
        # Encode points
        # B x 2 x H x W
        scribble_click_embed = click_onehot(inputs['point_coords'], inputs['point_labels'], shape=shape)
    else:
        scribble_click_embed = torch.zeros((img.shape[0], 2) + shape, device=device)

    if inputs.get("scribble") is not None:
        # Combine scribbles with click encoding
        # B x 2 x H x W
        scribble_click_embed = torch.clamp(scribble_click_embed + inputs.get('scribble'), min=0.0, max=1.0)

    if inputs.get('mask_input') is not None:
        # Previous prediction
        mask_input = inputs['mask_input']
    else:
        # Initialize empty channel for mask input
        mask_input = torch.zeros(img.shape, device=img.device)

    x = torch.cat((img, box_embed, scribble_click_embed, mask_input), dim=-3)
    # B x 5 x H x W

    return x
    
# -----------------------------------------------------------------------------
# Encode clicks and bounding boxes
# -----------------------------------------------------------------------------

def click_onehot(point_coords, point_labels, shape: Tuple[int,int] = (128,128), indexing='xy'):
    """
    Represent clicks as two HxW binary masks (one for positive clicks and one for negative) 
    with 1 at the click locations and 0 otherwise

    Args:
        point_coords (torch.Tensor): BxNx2 tensor of xy coordinates
        point_labels (torch.Tensor): BxN tensor of labels (0 or 1)
        shape (tuple): output shape     
    Returns:
        embed (torch.Tensor): Bx2xHxW tensor 
    """
    assert indexing in ['xy','uv'], f"Invalid indexing: {indexing}"
    assert len(point_coords.shape) == 3, "point_coords must be BxNx2"
    assert point_coords.shape[-1] == 2, "point_coords must be BxNx2"
    assert point_labels.shape[-1] == point_coords.shape[1], "point_labels must be BxN"
    assert len(shape)==2, f"shape must be 2D: {shape}"

    device = point_coords.device
    batch_size = point_coords.shape[0]
    n_points = point_coords.shape[1]

    embed = torch.zeros((batch_size,2)+shape, device=device)
    labels = point_labels.flatten().float()

    idx_coords = torch.cat((
        torch.arange(batch_size, device=device).reshape(-1,1).repeat(1,n_points)[...,None], 
        point_coords
    ), axis=2).reshape(-1,3)

    if indexing=='xy':
        embed[ idx_coords[:,0], 0, idx_coords[:,2], idx_coords[:,1] ] = labels
        embed[ idx_coords[:,0], 1, idx_coords[:,2], idx_coords[:,1] ] = 1.0-labels
    else:
        embed[ idx_coords[:,0], 0, idx_coords[:,1], idx_coords[:,2] ] = labels
        embed[ idx_coords[:,0], 1, idx_coords[:,1], idx_coords[:,2] ] = 1.0-labels

    return embed


def bbox_shaded(boxes, shape: Tuple[int,int] = (128,128), device='cpu'):
    """
    Represent bounding boxes as a binary mask with 1 inside boxes and 0 otherwise

    Args:
        boxes (torch.Tensor): Bx1x4 [x1, y1, x2, y2]
    Returns:
        bbox_embed (torch.Tesor): Bx1xHxW according to shape
    """
    assert len(shape)==2, "shape must be 2D"
    if isinstance(boxes, torch.Tensor):
        boxes = boxes.int().cpu().numpy()

    batch_size = boxes.shape[0]
    n_boxes = boxes.shape[1]
    bbox_embed = torch.zeros((batch_size,1)+tuple(shape), device=device, dtype=torch.float32)

    if boxes is not None:
        for i in range(batch_size):
            for j in range(n_boxes):
                x1, y1, x2, y2 = boxes[i,j,:]
                x_min = min(x1,x2)
                x_max = max(x1,x2)
                y_min = min(y1,y2)
                y_max = max(y1,y2)
                bbox_embed[ i, 0, y_min:y_max, x_min:x_max ] = 1.0

    return bbox_embed