Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from lm_eval import tasks, evaluator, utils | |
from lm_eval.tasks import TaskManager | |
from src.backend.manage_requests import EvalRequest | |
from src.backend.tasks.xsum.task import XSum | |
from src.backend.tasks.xsum.task_v2 import XSumv2 | |
from src.backend.tasks.cnndm.task import CNNDM | |
from src.backend.tasks.cnndm.task_v2 import CNNDMv2 | |
from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT | |
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100) -> dict: | |
if limit: | |
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.") | |
# include_task_folder("src/backend/tasks/") | |
# initialize_tasks('INFO') | |
print(f"Allocating task manager for: {task_names}") | |
task_manager = TaskManager(include_path="./src/backend/tasks/") | |
# task_manager.initialize_tasks('INFO') | |
print(f"Considered Tasks: {task_names}") | |
# print(f"Allowed Tasks: {tasks.ALL_TASKS}") | |
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS) | |
print(f"Selected Tasks: {task_names}") | |
print(f"Eval Request: {eval_request.get_model_args()}") | |
results = evaluator.simple_evaluate(model="hf-auto", # "hf-causal-experimental", # "hf-causal" | |
model_args=eval_request.get_model_args(), | |
tasks=task_names, | |
num_fewshot=num_fewshot, | |
batch_size=batch_size, | |
max_batch_size=8, | |
device=device, | |
use_cache=use_cache, | |
limit=limit, | |
write_out=True, | |
task_manager=task_manager) | |
results["config"]["model_dtype"] = eval_request.precision | |
results["config"]["model_name"] = eval_request.model | |
results["config"]["model_sha"] = eval_request.revision | |
if max_nb_samples is not None: | |
if 'samples' in results: | |
samples = results['samples'] | |
for task_name in samples.keys(): | |
if len(samples[task_name]) > max_nb_samples: | |
results['samples'][task_name] = results['samples'][task_name][:max_nb_samples] | |
# print(evaluator.make_table(results)) | |
return results | |