Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
from tqdm import tqdm | |
import copy | |
import pandas as pd | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
from src.leaderboard.filter_models import filter_models | |
from src.leaderboard.read_evals import get_raw_eval_results, EvalResult, update_model_type_with_open_llm_request_file | |
from src.backend.envs import Tasks as BackendTasks | |
from src.display.utils import Tasks | |
factuality_tasks = [ | |
"NQ Open/EM", | |
"TriviaQA/EM", | |
"PopQA/EM", | |
"FEVER/Acc", | |
"TrueFalse/Acc", | |
"TruthQA MC2/Acc", | |
] | |
faithfulness_tasks = [ | |
"MemoTrap/Acc", | |
"IFEval/Acc", | |
"NQ-Swap/EM", | |
"RACE/Acc", | |
"SQuADv2/EM", | |
"CNN-DM/ROUGE", | |
"XSum/ROUGE", | |
"HaluQA/Acc", | |
"FaithDial/Acc", | |
] | |
def get_leaderboard_df(results_path: str, | |
requests_path: str, | |
requests_path_open_llm: str, | |
cols: list, | |
benchmark_cols: list, | |
is_backend: bool = False) -> tuple[list[EvalResult], pd.DataFrame]: | |
# Returns a list of EvalResult | |
raw_data: list[EvalResult] = get_raw_eval_results(results_path, requests_path, requests_path_open_llm) | |
if requests_path_open_llm != "": | |
for result_idx in tqdm(range(len(raw_data)), desc="updating model type with open llm leaderboard"): | |
raw_data[result_idx] = update_model_type_with_open_llm_request_file(raw_data[result_idx], requests_path_open_llm) | |
all_data_json_ = [v.to_dict() for v in raw_data if v.is_complete()] | |
name_to_bm_map = {} | |
task_iterator = Tasks | |
if is_backend is True: | |
task_iterator = BackendTasks | |
for task in task_iterator: | |
task = task.value | |
name = task.col_name | |
bm = (task.benchmark, task.metric) | |
name_to_bm_map[name] = bm | |
# bm_to_name_map = {bm: name for name, bm in name_to_bm_map.items()} | |
all_data_json = [] | |
for entry in all_data_json_: | |
new_entry = copy.deepcopy(entry) | |
for k, v in entry.items(): | |
if k in name_to_bm_map: | |
benchmark, metric = name_to_bm_map[k] | |
new_entry[k] = entry[k][metric] | |
all_data_json += [new_entry] | |
# all_data_json.append(baseline_row) | |
filter_models(all_data_json) | |
df = pd.DataFrame.from_records(all_data_json) | |
# if AutoEvalColumn.average.name in df: | |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
cols_mod = copy.deepcopy(cols) | |
cols_mod.remove('Faithfulness') | |
cols_mod.remove('Factuality') | |
df = df[cols_mod]#.round(decimals=2) | |
# filter out if any of the benchmarks have not been produced | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
Factuality_score = df[factuality_tasks].mean(axis=1) | |
Faithfulness_score = df[faithfulness_tasks].mean(axis=1) | |
df.insert(2, 'Factuality', Factuality_score) | |
df.insert(2, 'Faithfulness', Faithfulness_score) | |
df = df.round(decimals=2) | |
return raw_data, df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |