from lm_eval import tasks, evaluator, utils from lm_eval.tasks import initialize_tasks, include_task_folder from src.backend.manage_requests import EvalRequest from src.backend.tasks.xsum.task import XSum from src.backend.tasks.cnndm.task import CNNDM from src.backend.tasks.selfcheckgpt.task import SelfCheckGpt def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100) -> dict: if limit: print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.") include_task_folder("src/backend/tasks/") initialize_tasks('INFO') task_names = utils.pattern_match(task_names, tasks.ALL_TASKS) print(f"Selected Tasks: {task_names}") results = evaluator.simple_evaluate(model="hf-auto", # "hf-causal-experimental", # "hf-causal" model_args=eval_request.get_model_args(), tasks=task_names, num_fewshot=num_fewshot, batch_size=batch_size, device=device, use_cache=use_cache, limit=limit, write_out=True) results["config"]["model_dtype"] = eval_request.precision results["config"]["model_name"] = eval_request.model results["config"]["model_sha"] = eval_request.revision if max_nb_samples is not None: if 'samples' in results: samples = results['samples'] for task_name in samples.keys(): if len(samples[task_name]) > max_nb_samples: results['samples'][task_name] = results['samples'][task_name][:max_nb_samples] print(evaluator.make_table(results)) return results