foto_filter / app.py
halokkaya's picture
Update app.py
37c13b7 verified
import cv2
import numpy as np
import gradio as gr
# Farklı filtre fonksiyonlarını da eklediğim kısım
def apply_gaussian_blur(frame):
return cv2.GaussianBlur(frame, (15, 15), 0)
def apply_sharpening_filter(frame):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
return cv2.filter2D(frame, -1, kernel)
def apply_edge_detection(frame):
return cv2.Canny(frame, 100, 200)
def apply_invert_filter(frame):
return cv2.bitwise_not(frame)
def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)
def adjust_saturation(frame, saturation_scale=1.0):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hsv[..., 1] = cv2.multiply(hsv[..., 1], saturation_scale)
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
def apply_grayscale_filter(frame):
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
def apply_sepia_filter(frame):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv2.transform(frame, sepia_filter)
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv2.transform(frame, fall_filter)
def apply_cartoon_filter(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
color = cv2.bilateralFilter(frame, 9, 300, 300)
cartoon = cv2.bitwise_and(color, color, mask=edges)
return cartoon
def apply_pencil_sketch_filter(frame):
gray, sketch = cv2.pencilSketch(frame, sigma_s=60, sigma_r=0.07, shade_factor=0.05)
return sketch
def apply_emboss_filter(frame):
kernel = np.array([[0, -1, -1], [1, 0, -1], [1, 1, 0]])
return cv2.filter2D(frame, -1, kernel)
def apply_hsv_color_change(frame, hue_shift=10):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hsv[..., 0] = (hsv[..., 0] + hue_shift) % 180
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# Filtre uygulama fonksiyonu
def apply_filter(filter_type, input_image=None, alpha=1.0, beta=50, saturation_scale=1.0, hue_shift=10):
if input_image is not None:
frame = input_image
else:
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if not ret:
return "Web kameradan görüntü alınamadı"
if filter_type == "Gaussian Blur":
frame = apply_gaussian_blur(frame)
elif filter_type == "Sharpen":
frame = apply_sharpening_filter(frame)
elif filter_type == "Edge Detection":
frame = apply_edge_detection(frame)
elif filter_type == "Invert":
frame = apply_invert_filter(frame)
elif filter_type == "Brightness/Contrast":
frame = adjust_brightness_contrast(frame, alpha=alpha, beta=beta)
elif filter_type == "Grayscale":
frame = apply_grayscale_filter(frame)
elif filter_type == "Sepia":
frame = apply_sepia_filter(frame)
elif filter_type == "Sonbahar":
frame = apply_fall_filter(frame)
elif filter_type == "Cartoonize":
frame = apply_cartoon_filter(frame)
elif filter_type == "Pencil Sketch":
frame = apply_pencil_sketch_filter(frame)
elif filter_type == "Emboss":
frame = apply_emboss_filter(frame)
elif filter_type == "HSV Color Change":
frame = apply_hsv_color_change(frame, hue_shift=hue_shift)
# Saturation ayarını uygulama
frame = adjust_saturation(frame, saturation_scale=saturation_scale)
return frame
# Gradio arayüzü
with gr.Blocks() as demo:
gr.Markdown("#Filtreleme")
# Filtre seçenekleri burada
filter_type = gr.Dropdown(
label="Filtre Seçin",
choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness/Contrast",
"Grayscale", "Sepia", "Sonbahar", "Cartoonize", "Pencil Sketch", "Emboss", "HSV Color Change"],
value="Gaussian Blur"
)
# Ayarlarımızı ekleyelim
# Görüntü yükleme alanımız
input_image = gr.Image(label="Resim Yükle", type="numpy")
# Parlaklık ve Kontrast ayarlarımız
brightness_slider = gr.Slider(label="Parlaklık Ayarı (beta)", minimum=-100, maximum=100, step=1, value=50)
contrast_slider = gr.Slider(label="Kontrast Ayarı (alpha)", minimum=0.5, maximum=3.0, step=0.1, value=1.0)
# Saturation ayarımız
saturation_slider = gr.Slider(label="Renk Doygunluğu", minimum=0.0, maximum=3.0, step=0.1, value=1.0)
# HSV renk kaydırma ayarımız
hue_slider = gr.Slider(label="HSV Renk Kaydırma", minimum=0, maximum=180, step=1, value=10)
# Çıktı için görüntümüz
output_image = gr.Image(label="Filtre Uygulandı")
# Filtre uygula butonumuz
apply_button = gr.Button("Filtreyi Uygula")
# Butona tıklanınca filtre uygulama fonksiyonumuz
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image, contrast_slider, brightness_slider, saturation_slider, hue_slider], outputs=output_image)
# Gradio arayüzünü başlatma kısmı
demo.launch()