File size: 3,112 Bytes
d617811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

import os
import pytest
import torch
import open_clip
import util_test

os.environ['CUDA_VISIBLE_DEVICES'] = ''

models_to_test = set(open_clip.list_models())

# testing excemptions
models_to_test = models_to_test.difference({
        # not available with timm yet
        # see https://github.com/mlfoundations/open_clip/issues/219
        'convnext_xlarge',
        'convnext_xxlarge',
        'convnext_xxlarge_320',
        'vit_medium_patch16_gap_256',
        # exceeds GH runner memory limit
        'ViT-bigG-14',
        'ViT-e-14',
        'mt5-xl-ViT-H-14',
})

if 'OPEN_CLIP_TEST_REG_MODELS' in os.environ:
    external_model_list = os.environ['OPEN_CLIP_TEST_REG_MODELS']
    with open(external_model_list, 'r') as f:
        models_to_test = set(f.read().splitlines()).intersection(models_to_test)
    print(f"Selected models from {external_model_list}: {models_to_test}")

models_to_test = list(models_to_test)
models_to_test.sort()

@pytest.mark.regression_test
@pytest.mark.parametrize('model_name', models_to_test)
def test_inference_with_data(
        model_name,
        pretrained = None,
        pretrained_hf = False,
        precision = 'fp32',
        jit = False,
        force_quick_gelu = False,
):
    util_test.seed_all()
    model, _, preprocess_val = open_clip.create_model_and_transforms(
            model_name,
            pretrained = pretrained,
            precision = precision,
            jit = jit,
            force_quick_gelu = force_quick_gelu,
            pretrained_hf = pretrained_hf
    )
    model_id = f'{model_name}_{pretrained or pretrained_hf}_{precision}'
    input_dir, output_dir = util_test.get_data_dirs()
    # text
    input_text_path = os.path.join(input_dir, 'random_text.pt')
    gt_text_path = os.path.join(output_dir, f'{model_id}_random_text.pt')
    if not os.path.isfile(input_text_path):
        pytest.skip(reason = f"missing test data, expected at {input_text_path}")
    if not os.path.isfile(gt_text_path):
        pytest.skip(reason = f"missing test data, expected at {gt_text_path}")
    input_text = torch.load(input_text_path)
    gt_text = torch.load(gt_text_path)
    y_text = util_test.inference_text(model, model_name, input_text)
    assert (y_text == gt_text).all(), f"text output differs @ {input_text_path}"
    # image
    image_size = model.visual.image_size
    if not isinstance(image_size, tuple):
        image_size = (image_size, image_size)
    input_image_path = os.path.join(input_dir, f'random_image_{image_size[0]}_{image_size[1]}.pt')
    gt_image_path = os.path.join(output_dir, f'{model_id}_random_image.pt')
    if not os.path.isfile(input_image_path):
        pytest.skip(reason = f"missing test data, expected at {input_image_path}")
    if not os.path.isfile(gt_image_path):
        pytest.skip(reason = f"missing test data, expected at {gt_image_path}")
    input_image = torch.load(input_image_path)
    gt_image = torch.load(gt_image_path)
    y_image = util_test.inference_image(model, preprocess_val, input_image)
    assert (y_image == gt_image).all(), f"image output differs @ {input_image_path}"