File size: 5,245 Bytes
d617811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Prepare Datasets for CAT-Seg

A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog)
for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
[Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`,
and how to add new datasets to them.

CAT-Seg has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable
`DETECTRON2_DATASETS`.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
```
$DETECTRON2_DATASETS/
  coco/                   # COCO-Stuff
  ADEChallengeData2016/   # ADE20K-150
  ADE20K_2021_17_01/      # ADE20K-847
  VOCdevkit/ 
    VOC2010/              # PASCAL Context
    VOC2012/              # PASCAL VOC
```

You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`.
If left unset, the default is `./datasets` relative to your current working directory.

## Prepare data for [COCO-Stuff](https://github.com/nightrome/cocostuff):

### Expected data structure

```
coco-stuff/
  annotations/
    train2017/
    val2017/
  images/
    train2017/
    val2017/
  # below are generated by prepare_coco_stuff.py
  annotations_detectron2/
    train2017/
    val2017/ 
```
Download the COCO (2017) images from https://cocodataset.org/

```bash
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
```

Download the COCO-Stuff annotation from https://github.com/nightrome/cocostuff.
```bash
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip
```
Unzip `train2017.zip`, `val2017.zip`, and `stuffthingmaps_trainval2017.zip`. Then put them to the correct location listed above.

Generate the labels for training and testing.

```
python datasets/prepare_coco_stuff.py
```



## Prepare data for [ADE20K-150](http://sceneparsing.csail.mit.edu):

### Expected data structure 
```
ADEChallengeData2016/
  annotations/
    validation/
  images/
    validation/
  # below are generated by prepare_ade20k_150.py
  annotations_detectron2/
    validation/
```
Download the data of ADE20K-150 from http://sceneparsing.csail.mit.edu.
```
wget http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip
```
Unzip `ADEChallengeData2016.zip` and generate the labels for testing.
```
python datasets/prepare_ade20k_150.py
```
## Prepare data for [ADE20k-847](https://groups.csail.mit.edu/vision/datasets/ADE20K/):

### Expected data structure 
```
ADE20K_2021_17_01/
  images/
    ADE/
      validation/
  index_ade20k.mat
  index_ade20k.pkl
  # below are generated by prepare_ade20k_847.py
  annotations_detectron2/
    validation/
```
Download the data of ADE20k-Full from https://groups.csail.mit.edu/vision/datasets/ADE20K/request_data/
Unzip the dataset and generate the labels for testing.
```
python datasets/prepare_ade20k_847.py
```

## Prepare data for [PASCAL VOC 2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit):


### Expected data structure 
```
VOCdevkit/
  VOC2012/
    Annotations/
    ImageSets/
    JPEGImages/
    SegmentationClass/
    SegmentationClassAug/ 
    SegmentationObject/
    # below are generated by prepare_voc.py
    annotations_detectron2
    annotations_detectron2_bg

```
Download the data of PASCAL VOC from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit.

We use SBD augmentated training data as SegmentationClassAug following [Deeplab](https://github.com/kazuto1011/deeplab-pytorch/blob/master/data/datasets/voc12/README.md).
```
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget https://www.dropbox.com/s/oeu149j8qtbs1x0/SegmentationClassAug.zip
```
Unzip `VOCtrainval_11-May-2012.tar` and `SegmentationClassAug.zip`. Then put them to the correct location listed above and generate the labels for testing.
```
python datasets/prepare_voc.py
```


## Prepare data for [PASCAL Context](https://www.cs.stanford.edu/~roozbeh/pascal-context/):


### Expected data structure 
```
VOCdevkit/
  VOC2010/
    Annotations/
    ImageSets/
    JPEGImages/
    SegmentationClass/
    SegmentationObject/
    trainval/
    labels.txt
    59_labels.txt
    pascalcontext_val.txt
    # below are generated by prepare_pascal_context.py
    annotations_detectron2/
      pc459_val
      pc59_val
```
Download the data of PASCAL VOC 2010 from https://www.cs.stanford.edu/~roozbeh/pascal-context/. 

```
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/trainval.tar.gz
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/59_labels.txt
```
Unzip `VOCtrainval_03-May-2010.tar` and `trainval.tar.gz`. Then put them to the correct location listed above and generate the labels for testing.
```
python datasets/prepare_pascal_context.py
```