|
|
|
|
|
import copy |
|
import logging |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from detectron2.config import configurable |
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
from detectron2.data.transforms import TransformGen |
|
from detectron2.structures import BitMasks, Instances |
|
|
|
__all__ = ["DETRPanopticDatasetMapper"] |
|
|
|
|
|
def build_transform_gen(cfg, is_train): |
|
""" |
|
Create a list of :class:`TransformGen` from config. |
|
Returns: |
|
list[TransformGen] |
|
""" |
|
if is_train: |
|
min_size = cfg.INPUT.MIN_SIZE_TRAIN |
|
max_size = cfg.INPUT.MAX_SIZE_TRAIN |
|
sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING |
|
else: |
|
min_size = cfg.INPUT.MIN_SIZE_TEST |
|
max_size = cfg.INPUT.MAX_SIZE_TEST |
|
sample_style = "choice" |
|
if sample_style == "range": |
|
assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format( |
|
len(min_size) |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
tfm_gens = [] |
|
if is_train: |
|
tfm_gens.append(T.RandomFlip()) |
|
tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style)) |
|
if is_train: |
|
logger.info("TransformGens used in training: " + str(tfm_gens)) |
|
return tfm_gens |
|
|
|
|
|
|
|
class DETRPanopticDatasetMapper: |
|
""" |
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
and map it into a format used by MaskFormer. |
|
|
|
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. |
|
|
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" |
|
2. Applies geometric transforms to the image and annotation |
|
3. Find and applies suitable cropping to the image and annotation |
|
4. Prepare image and annotation to Tensors |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
is_train=True, |
|
*, |
|
crop_gen, |
|
tfm_gens, |
|
image_format, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
is_train: for training or inference |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
crop_gen: crop augmentation |
|
tfm_gens: data augmentation |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
""" |
|
self.crop_gen = crop_gen |
|
self.tfm_gens = tfm_gens |
|
logging.getLogger(__name__).info( |
|
"[DETRPanopticDatasetMapper] Full TransformGens used in training: {}, crop: {}".format( |
|
str(self.tfm_gens), str(self.crop_gen) |
|
) |
|
) |
|
|
|
self.img_format = image_format |
|
self.is_train = is_train |
|
|
|
@classmethod |
|
def from_config(cls, cfg, is_train=True): |
|
|
|
if cfg.INPUT.CROP.ENABLED and is_train: |
|
crop_gen = [ |
|
T.ResizeShortestEdge([400, 500, 600], sample_style="choice"), |
|
T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE), |
|
] |
|
else: |
|
crop_gen = None |
|
|
|
tfm_gens = build_transform_gen(cfg, is_train) |
|
|
|
ret = { |
|
"is_train": is_train, |
|
"crop_gen": crop_gen, |
|
"tfm_gens": tfm_gens, |
|
"image_format": cfg.INPUT.FORMAT, |
|
} |
|
return ret |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
image = utils.read_image(dataset_dict["file_name"], format=self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
if self.crop_gen is None: |
|
image, transforms = T.apply_transform_gens(self.tfm_gens, image) |
|
else: |
|
if np.random.rand() > 0.5: |
|
image, transforms = T.apply_transform_gens(self.tfm_gens, image) |
|
else: |
|
image, transforms = T.apply_transform_gens( |
|
self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image |
|
) |
|
|
|
image_shape = image.shape[:2] |
|
|
|
|
|
|
|
|
|
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
|
|
if not self.is_train: |
|
|
|
dataset_dict.pop("annotations", None) |
|
return dataset_dict |
|
|
|
if "pan_seg_file_name" in dataset_dict: |
|
pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB") |
|
segments_info = dataset_dict["segments_info"] |
|
|
|
|
|
pan_seg_gt = transforms.apply_segmentation(pan_seg_gt) |
|
|
|
from panopticapi.utils import rgb2id |
|
|
|
pan_seg_gt = rgb2id(pan_seg_gt) |
|
|
|
instances = Instances(image_shape) |
|
classes = [] |
|
masks = [] |
|
for segment_info in segments_info: |
|
class_id = segment_info["category_id"] |
|
if not segment_info["iscrowd"]: |
|
classes.append(class_id) |
|
masks.append(pan_seg_gt == segment_info["id"]) |
|
|
|
classes = np.array(classes) |
|
instances.gt_classes = torch.tensor(classes, dtype=torch.int64) |
|
if len(masks) == 0: |
|
|
|
instances.gt_masks = torch.zeros((0, pan_seg_gt.shape[-2], pan_seg_gt.shape[-1])) |
|
else: |
|
masks = BitMasks( |
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks]) |
|
) |
|
instances.gt_masks = masks.tensor |
|
|
|
dataset_dict["instances"] = instances |
|
|
|
return dataset_dict |
|
|