|
import argparse |
|
|
|
import torch |
|
import open_clip |
|
import pandas as pd |
|
from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis |
|
|
|
|
|
parser = argparse.ArgumentParser(description='OpenCLIP Profiler') |
|
|
|
|
|
parser.add_argument('--model', metavar='NAME', default='', |
|
help='model(s) to profile') |
|
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', |
|
help='Output csv file for results') |
|
|
|
|
|
def profile_fvcore( |
|
model, |
|
image_input_size=(3, 224, 224), |
|
text_input_size=(77,), |
|
batch_size=1, |
|
detailed=False, |
|
force_cpu=False |
|
): |
|
if force_cpu: |
|
model = model.to('cpu') |
|
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype |
|
example_image_input = torch.ones((batch_size,) + image_input_size, device=device, dtype=dtype) |
|
example_text_input = torch.ones((batch_size,) + text_input_size, device=device, dtype=torch.int64) |
|
fca = FlopCountAnalysis(model, (example_image_input, example_text_input)) |
|
aca = ActivationCountAnalysis(model, (example_image_input, example_text_input)) |
|
if detailed: |
|
fcs = flop_count_str(fca) |
|
print(fcs) |
|
return fca.total(), aca.total() |
|
|
|
|
|
def profile_fvcore_text( |
|
model, |
|
text_input_size=(77,), |
|
batch_size=1, |
|
detailed=False, |
|
force_cpu=False |
|
): |
|
if force_cpu: |
|
model = model.to('cpu') |
|
device = next(model.parameters()).device |
|
example_input = torch.ones((batch_size,) + text_input_size, device=device, dtype=torch.int64) |
|
fca = FlopCountAnalysis(model, example_input) |
|
aca = ActivationCountAnalysis(model, example_input) |
|
if detailed: |
|
fcs = flop_count_str(fca) |
|
print(fcs) |
|
return fca.total(), aca.total() |
|
|
|
|
|
def profile_fvcore_image( |
|
model, |
|
image_input_size=(3, 224, 224), |
|
batch_size=1, |
|
detailed=False, |
|
force_cpu=False |
|
): |
|
if force_cpu: |
|
model = model.to('cpu') |
|
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype |
|
example_input = torch.ones((batch_size,) + image_input_size, device=device, dtype=dtype) |
|
fca = FlopCountAnalysis(model, example_input) |
|
aca = ActivationCountAnalysis(model, example_input) |
|
if detailed: |
|
fcs = flop_count_str(fca) |
|
print(fcs) |
|
return fca.total(), aca.total() |
|
|
|
|
|
def count_params(model): |
|
return sum([m.numel() for m in model.parameters()]) |
|
|
|
|
|
def profile_model(model_name): |
|
model = open_clip.create_model(model_name, force_custom_text=True, pretrained_hf=False) |
|
model.eval() |
|
if torch.cuda.is_available(): |
|
model = model.cuda() |
|
|
|
if isinstance(model.visual.image_size, (tuple, list)): |
|
image_input_size = (3,) + tuple(model.visual.image_size[-2:]) |
|
else: |
|
image_input_size = (3, model.visual.image_size, model.visual.image_size) |
|
text_input_size = (77,) |
|
|
|
results = {} |
|
results['model'] = model_name |
|
results['image_size'] = image_input_size[1] |
|
|
|
model_cfg = open_clip.get_model_config(model_name) |
|
if model_cfg: |
|
vision_cfg = open_clip.CLIPVisionCfg(**model_cfg['vision_cfg']) |
|
text_cfg = open_clip.CLIPTextCfg(**model_cfg['text_cfg']) |
|
results['image_width'] = int(vision_cfg.width) |
|
results['text_width'] = int(text_cfg.width) |
|
results['embed_dim'] = int(model_cfg['embed_dim']) |
|
else: |
|
results['image_width'] = 0 |
|
results['text_width'] = 0 |
|
results['embed_dim'] = 0 |
|
|
|
retries = 2 |
|
while retries: |
|
retries -= 1 |
|
try: |
|
macs, acts = profile_fvcore( |
|
model, image_input_size=image_input_size, text_input_size=text_input_size, force_cpu=not retries) |
|
|
|
image_macs, image_acts = profile_fvcore_image( |
|
model.visual, image_input_size=image_input_size, force_cpu=not retries) |
|
|
|
text_macs, text_acts = profile_fvcore_text( |
|
model.text, text_input_size=text_input_size, force_cpu=not retries) |
|
|
|
results['gmacs'] = round(macs / 1e9, 2) |
|
results['macts'] = round(acts / 1e6, 2) |
|
results['mparams'] = round(count_params(model) / 1e6, 2) |
|
results['image_gmacs'] = round(image_macs / 1e9, 2) |
|
results['image_macts'] = round(image_acts / 1e6, 2) |
|
results['image_mparams'] = round(count_params(model.visual) / 1e6, 2) |
|
results['text_gmacs'] = round(text_macs / 1e9, 2) |
|
results['text_macts'] = round(text_acts / 1e6, 2) |
|
results['text_mparams'] = round(count_params(model.text) / 1e6, 2) |
|
except RuntimeError as e: |
|
pass |
|
return results |
|
|
|
|
|
def main(): |
|
args = parser.parse_args() |
|
|
|
|
|
if args.model == 'all': |
|
parsed_model = open_clip.list_models() |
|
else: |
|
parsed_model = args.model.split(',') |
|
|
|
results = [] |
|
for m in parsed_model: |
|
row = profile_model(m) |
|
results.append(row) |
|
|
|
df = pd.DataFrame(results, columns=results[0].keys()) |
|
df = df.sort_values('gmacs') |
|
print(df) |
|
if args.results_file: |
|
df.to_csv(args.results_file, index=False) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|