File size: 15,351 Bytes
f1586f7 a1a69e9 f1586f7 72bbdf9 f1586f7 205164d f1586f7 6b9382c f1586f7 72bbdf9 f1586f7 6b9382c f1586f7 9e9e6ff 205164d 7798ce5 205164d f1586f7 72bbdf9 f1586f7 e4d9159 7798ce5 e4d9159 f1586f7 6b9382c f1586f7 604efc8 f1586f7 604efc8 f1586f7 e11cc45 f1586f7 e11cc45 f1586f7 e11cc45 f1586f7 e11cc45 f1586f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), "locotrack_pytorch"))
import uuid
import spaces
import gradio as gr
import mediapy
import numpy as np
import cv2
import matplotlib
import torch
from locotrack_pytorch.models.locotrack_model import load_model, FeatureGrids
from viz_utils import paint_point_track
PREVIEW_WIDTH = 768 # Width of the preview video
VIDEO_INPUT_RESO = (256, 256) # Resolution of the input video
POINT_SIZE = 4 # Size of the query point in the preview video
FRAME_LIMIT = 300 # Limit the number of frames to process
WEIGHTS_PATH = {
"small": "./weights/locotrack_small.ckpt",
"base": "./weights/locotrack_base.ckpt",
}
def get_point(frame_num, video_queried_preview, query_points, query_points_color, query_count, evt: gr.SelectData):
current_frame = video_queried_preview[int(frame_num)]
# Get the mouse click
query_points[int(frame_num)].append((evt.index[0], evt.index[1], frame_num))
# Choose the color for the point from matplotlib colormap
color = matplotlib.colormaps.get_cmap("gist_rainbow")(query_count % 20 / 20)
color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
query_points_color[int(frame_num)].append(color)
# Draw the point on the frame
x, y = evt.index
current_frame_draw = cv2.circle(current_frame, (x, y), POINT_SIZE, color, -1)
# Update the frame
video_queried_preview[int(frame_num)] = current_frame_draw
# Update the query count
query_count += 1
return (
current_frame_draw, # Updated frame for preview
video_queried_preview, # Updated preview video
query_points, # Updated query points
query_points_color, # Updated query points color
query_count # Updated query count
)
def undo_point(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
if len(query_points[int(frame_num)]) == 0:
return (
video_queried_preview[int(frame_num)],
video_queried_preview,
query_points,
query_points_color,
query_count
)
# Get the last point
query_points[int(frame_num)].pop(-1)
query_points_color[int(frame_num)].pop(-1)
# Redraw the frame
current_frame_draw = video_preview[int(frame_num)].copy()
for point, color in zip(query_points[int(frame_num)], query_points_color[int(frame_num)]):
x, y, _ = point
current_frame_draw = cv2.circle(current_frame_draw, (x, y), POINT_SIZE, color, -1)
# Update the query count
query_count -= 1
# Update the frame
video_queried_preview[int(frame_num)] = current_frame_draw
return (
current_frame_draw, # Updated frame for preview
video_queried_preview, # Updated preview video
query_points, # Updated query points
query_points_color, # Updated query points color
query_count # Updated query count
)
def clear_frame_fn(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
query_count -= len(query_points[int(frame_num)])
query_points[int(frame_num)] = []
query_points_color[int(frame_num)] = []
video_queried_preview[int(frame_num)] = video_preview[int(frame_num)].copy()
return (
video_preview[int(frame_num)], # Set the preview frame to the original frame
video_queried_preview,
query_points, # Cleared query points
query_points_color, # Cleared query points color
query_count # New query count
)
def clear_all_fn(frame_num, video_preview):
return (
video_preview[int(frame_num)],
video_preview.copy(),
[[] for _ in range(len(video_preview))],
[[] for _ in range(len(video_preview))],
0
)
def choose_frame(frame_num, video_preview_array):
return video_preview_array[int(frame_num)]
@spaces.GPU
def extract_feature(video_input, model_size="small"):
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float16
model = load_model(WEIGHTS_PATH[model_size], model_size=model_size).to(device)
video_input = (video_input / 255.0) * 2 - 1
video_input = torch.tensor(video_input).unsqueeze(0).to(device, dtype)
with torch.autocast(device_type=device, dtype=dtype):
with torch.no_grad():
feature = model.get_feature_grids(video_input)
feature = FeatureGrids(
lowres=(feature.lowres[-1].cpu(),),
hires=(feature.hires[-1].cpu(),),
highest=(feature.highest[-1].cpu(),),
resolutions=(feature.resolutions[-1],),
)
return feature
def preprocess_video_input(video_path, model_size):
video_arr = mediapy.read_video(video_path)
video_fps = video_arr.metadata.fps
num_frames = video_arr.shape[0]
if num_frames > FRAME_LIMIT:
gr.Warning(f"The video is too long. Only the first {FRAME_LIMIT} frames will be used.", duration=5)
video_arr = video_arr[:FRAME_LIMIT]
num_frames = FRAME_LIMIT
# Resize to preview size for faster processing, width = PREVIEW_WIDTH
height, width = video_arr.shape[1:3]
new_height, new_width = int(PREVIEW_WIDTH * height / width), PREVIEW_WIDTH
preview_video = mediapy.resize_video(video_arr, (new_height, new_width))
input_video = mediapy.resize_video(video_arr, VIDEO_INPUT_RESO)
preview_video = np.array(preview_video)
input_video = np.array(input_video)
video_feature = extract_feature(input_video, model_size)
return (
video_arr, # Original video
preview_video, # Original preview video, resized for faster processing
preview_video.copy(), # Copy of preview video for visualization
input_video, # Resized video input for model
video_feature, # Extracted feature
video_fps, # Set the video FPS
gr.update(open=False), # Close the video input drawer
model_size, # Set the model size
preview_video[0], # Set the preview frame to the first frame
gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=True), # Set slider interactive
[[] for _ in range(num_frames)], # Set query_points to empty
[[] for _ in range(num_frames)], # Set query_points_color to empty
[[] for _ in range(num_frames)],
0, # Set query count to 0
gr.update(interactive=True), # Make the buttons interactive
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
)
@spaces.GPU
def track(
model_size,
video_preview,
video_input,
video_feature,
video_fps,
query_points,
query_points_color,
query_count,
):
if query_count == 0:
gr.Warning("Please add query points before tracking.", duration=5)
return None
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float16
video_feature = FeatureGrids(
lowres=(video_feature.lowres[-1].to(device, dtype),),
hires=(video_feature.hires[-1].to(device, dtype),),
highest=(video_feature.highest[-1].to(device, dtype),),
resolutions=(video_feature.resolutions[-1],),
)
# Convert query points to tensor, normalize to input resolution
query_points_tensor = []
for frame_points in query_points:
query_points_tensor.extend(frame_points)
query_points_tensor = torch.tensor(query_points_tensor).float()
query_points_tensor *= torch.tensor([
VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0], 1
]) / torch.tensor([
[video_preview.shape[2], video_preview.shape[1], 1]
])
query_points_tensor = query_points_tensor[None].flip(-1).to(device, dtype) # xyt -> tyx
# Preprocess video input
video_input = (video_input / 255.0) * 2 - 1
video_input = torch.tensor(video_input).unsqueeze(0).to(device, dtype)
model = load_model(WEIGHTS_PATH[model_size], model_size=model_size).to(device)
with torch.autocast(device_type=device, dtype=dtype):
with torch.no_grad():
output = model(video_input, query_points_tensor, feature_grids=video_feature)
tracks = output['tracks'][0].cpu()
tracks = tracks * torch.tensor([
video_preview.shape[2], video_preview.shape[1]
]) / torch.tensor([
VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]
])
tracks = np.array(tracks)
occlusion_logits = output['occlusion']
pred_occ = torch.sigmoid(occlusion_logits)
if 'expected_dist' in output:
expected_dist = output['expected_dist']
pred_occ = 1 - (1 - pred_occ) * (1 - torch.sigmoid(expected_dist))
pred_occ = (pred_occ > 0.5)[0].cpu()
pred_occ = np.array(pred_occ)
# make color array
colors = []
for frame_colors in query_points_color:
colors.extend(frame_colors)
colors = np.array(colors)
painted_video = paint_point_track(
video_preview,
tracks,
~pred_occ,
colors,
)
# save video
video_file_name = uuid.uuid4().hex + ".mp4"
video_path = os.path.join(os.path.dirname(__file__), "tmp")
video_file_path = os.path.join(video_path, video_file_name)
os.makedirs(video_path, exist_ok=True)
mediapy.write_video(video_file_path, painted_video, fps=video_fps)
return video_file_path
with gr.Blocks() as demo:
video = gr.State()
video_queried_preview = gr.State()
video_preview = gr.State()
video_input = gr.State()
video_feautre = gr.State()
video_fps = gr.State(24)
model_size = gr.State("small")
query_points = gr.State([])
query_points_color = gr.State([])
is_tracked_query = gr.State([])
query_count = gr.State(0)
gr.Markdown("# LocoTrack Demo")
gr.Markdown("This is an interactive demo for LocoTrack. For more details, please refer to the [GitHub repository](https://github.com/KU-CVLAB/LocoTrack) or the [paper](https://arxiv.org/abs/2407.15420).")
gr.Markdown("## First step: Choose the model size, upload your video or select an example video, and click submit.")
with gr.Row():
with gr.Accordion("Your video input", open=True) as video_in_drawer:
model_size_selection = gr.Radio(
label="Model Size",
choices=["small", "base"],
value="small",
)
video_in = gr.Video(label="Video Input", format="mp4")
with gr.Row():
example = gr.Examples(
label="Example Vidoes",
examples=[
["./examples/bmx-bumps.mp4"],
["./examples/bmx-trees.mp4"],
["./examples/breakdance-flare.mp4"],
["./examples/breakdance.mp4"],
["./examples/dance-jump.mp4"],
["./examples/horsejump-high.mp4"],
["./examples/libby.mp4"],
["./examples/motocross-jump.mp4"],
["./examples/parkour.mp4"],
],
inputs=[video_in],
examples_per_page=3
)
submit = gr.Button("Submit", scale=0)
gr.Markdown("## Second step: Add query points to the video, and click track.")
with gr.Row():
with gr.Column():
with gr.Row():
query_frames = gr.Slider(
minimum=0, maximum=100, value=0, step=1, label="Choose Frame", interactive=False)
with gr.Row():
undo = gr.Button("Undo", interactive=False)
clear_frame = gr.Button("Clear Frame", interactive=False)
clear_all = gr.Button("Clear All", interactive=False)
with gr.Row():
current_frame = gr.Image(
label="Click to add query points",
type="numpy",
interactive=False
)
with gr.Row():
track_button = gr.Button("Track", interactive=False)
with gr.Column():
output_video = gr.Video(
label="Output Video",
interactive=False,
autoplay=True,
loop=True,
)
submit.click(
fn = preprocess_video_input,
inputs = [video_in, model_size_selection],
outputs = [
video,
video_preview,
video_queried_preview,
video_input,
video_feautre,
video_fps,
video_in_drawer,
model_size,
current_frame,
query_frames,
query_points,
query_points_color,
is_tracked_query,
query_count,
undo,
clear_frame,
clear_all,
track_button,
],
queue = False
)
query_frames.change(
fn = choose_frame,
inputs = [query_frames, video_queried_preview],
outputs = [
current_frame,
],
queue = False
)
current_frame.select(
fn = get_point,
inputs = [
query_frames,
video_queried_preview,
query_points,
query_points_color,
query_count,
],
outputs = [
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count
],
queue = False
)
undo.click(
fn = undo_point,
inputs = [
query_frames,
video_preview,
video_queried_preview,
query_points,
query_points_color,
query_count
],
outputs = [
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count
],
queue = False
)
clear_frame.click(
fn = clear_frame_fn,
inputs = [
query_frames,
video_preview,
video_queried_preview,
query_points,
query_points_color,
query_count
],
outputs = [
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count
],
queue = False
)
clear_all.click(
fn = clear_all_fn,
inputs = [
query_frames,
video_preview,
],
outputs = [
current_frame,
video_queried_preview,
query_points,
query_points_color,
query_count
],
queue = False
)
track_button.click(
fn = track,
inputs = [
model_size,
video_preview,
video_input,
video_feautre,
video_fps,
query_points,
query_points_color,
query_count,
],
outputs = [
output_video,
],
queue = True,
)
demo.launch(show_api=False, show_error=True, debug=True) |