File size: 28,020 Bytes
f1586f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
# Copyright 2024 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation dataset creation functions."""
import csv
import functools
import io
import os
from os import path
import pickle
import random
from typing import Iterable, Mapping, Optional, Tuple, Union
from absl import logging
import mediapy as media
import numpy as np
from PIL import Image
import scipy.io as sio
import tensorflow as tf
import tensorflow_datasets as tfds
from models.utils import convert_grid_coordinates
DatasetElement = Mapping[str, Mapping[str, Union[np.ndarray, str]]]
def resize_video(video: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray:
"""Resize a video to output_size."""
# If you have a GPU, consider replacing this with a GPU-enabled resize op,
# such as a jitted jax.image.resize. It will make things faster.
return media.resize_video(video, output_size)
def compute_tapvid_metrics(
query_points: np.ndarray,
gt_occluded: np.ndarray,
gt_tracks: np.ndarray,
pred_occluded: np.ndarray,
pred_tracks: np.ndarray,
query_mode: str,
get_trackwise_metrics: bool = False,
) -> Mapping[str, np.ndarray]:
"""Computes TAP-Vid metrics (Jaccard, Pts.
Within Thresh, Occ.
Acc.)
See the TAP-Vid paper for details on the metric computation. All inputs are
given in raster coordinates. The first three arguments should be the direct
outputs of the reader: the 'query_points', 'occluded', and 'target_points'.
The paper metrics assume these are scaled relative to 256x256 images.
pred_occluded and pred_tracks are your algorithm's predictions.
This function takes a batch of inputs, and computes metrics separately for
each video. The metrics for the full benchmark are a simple mean of the
metrics across the full set of videos. These numbers are between 0 and 1,
but the paper multiplies them by 100 to ease reading.
Args:
query_points: The query points, an in the format [t, y, x]. Its size is
[b, n, 3], where b is the batch size and n is the number of queries
gt_occluded: A boolean array of shape [b, n, t], where t is the number of
frames. True indicates that the point is occluded.
gt_tracks: The target points, of shape [b, n, t, 2]. Each point is in the
format [x, y]
pred_occluded: A boolean array of predicted occlusions, in the same format
as gt_occluded.
pred_tracks: An array of track predictions from your algorithm, in the same
format as gt_tracks.
query_mode: Either 'first' or 'strided', depending on how queries are
sampled. If 'first', we assume the prior knowledge that all points
before the query point are occluded, and these are removed from the
evaluation.
get_trackwise_metrics: if True, the metrics will be computed for every
track (rather than every video, which is the default). This means
every output tensor will have an extra axis [batch, num_tracks] rather
than simply (batch).
Returns:
A dict with the following keys:
occlusion_accuracy: Accuracy at predicting occlusion.
pts_within_{x} for x in [1, 2, 4, 8, 16]: Fraction of points
predicted to be within the given pixel threshold, ignoring occlusion
prediction.
jaccard_{x} for x in [1, 2, 4, 8, 16]: Jaccard metric for the given
threshold
average_pts_within_thresh: average across pts_within_{x}
average_jaccard: average across jaccard_{x}
"""
summing_axis = (2,) if get_trackwise_metrics else (1, 2)
metrics = {}
eye = np.eye(gt_tracks.shape[2], dtype=np.int32)
if query_mode == 'first':
# evaluate frames after the query frame
query_frame_to_eval_frames = np.cumsum(eye, axis=1) - eye
elif query_mode == 'strided':
# evaluate all frames except the query frame
query_frame_to_eval_frames = 1 - eye
else:
raise ValueError('Unknown query mode ' + query_mode)
query_frame = query_points[..., 0]
query_frame = np.round(query_frame).astype(np.int32)
evaluation_points = query_frame_to_eval_frames[query_frame] > 0
# Occlusion accuracy is simply how often the predicted occlusion equals the
# ground truth.
occ_acc = np.sum(
np.equal(pred_occluded, gt_occluded) & evaluation_points,
axis=summing_axis,
) / np.sum(evaluation_points, axis=summing_axis)
metrics['occlusion_accuracy'] = occ_acc
# Next, convert the predictions and ground truth positions into pixel
# coordinates.
visible = np.logical_not(gt_occluded)
pred_visible = np.logical_not(pred_occluded)
all_frac_within = []
all_jaccard = []
for thresh in [1, 2, 4, 8, 16]:
# True positives are points that are within the threshold and where both
# the prediction and the ground truth are listed as visible.
within_dist = np.sum(
np.square(pred_tracks - gt_tracks),
axis=-1,
) < np.square(thresh)
is_correct = np.logical_and(within_dist, visible)
# Compute the frac_within_threshold, which is the fraction of points
# within the threshold among points that are visible in the ground truth,
# ignoring whether they're predicted to be visible.
count_correct = np.sum(
is_correct & evaluation_points,
axis=summing_axis,
)
count_visible_points = np.sum(
visible & evaluation_points, axis=summing_axis
)
frac_correct = count_correct / count_visible_points
metrics['pts_within_' + str(thresh)] = frac_correct
all_frac_within.append(frac_correct)
true_positives = np.sum(
is_correct & pred_visible & evaluation_points, axis=summing_axis
)
# The denominator of the jaccard metric is the true positives plus
# false positives plus false negatives. However, note that true positives
# plus false negatives is simply the number of points in the ground truth
# which is easier to compute than trying to compute all three quantities.
# Thus we just add the number of points in the ground truth to the number
# of false positives.
#
# False positives are simply points that are predicted to be visible,
# but the ground truth is not visible or too far from the prediction.
gt_positives = np.sum(visible & evaluation_points, axis=summing_axis)
false_positives = (~visible) & pred_visible
false_positives = false_positives | ((~within_dist) & pred_visible)
false_positives = np.sum(
false_positives & evaluation_points, axis=summing_axis
)
jaccard = true_positives / (gt_positives + false_positives)
metrics['jaccard_' + str(thresh)] = jaccard
all_jaccard.append(jaccard)
metrics['average_jaccard'] = np.mean(
np.stack(all_jaccard, axis=1),
axis=1,
)
metrics['average_pts_within_thresh'] = np.mean(
np.stack(all_frac_within, axis=1),
axis=1,
)
return metrics
def latex_table(mean_scalars: Mapping[str, float]) -> str:
"""Generate a latex table for displaying TAP-Vid and PCK metrics."""
if 'average_jaccard' in mean_scalars:
latex_fields = [
'average_jaccard',
'average_pts_within_thresh',
'occlusion_accuracy',
'jaccard_1',
'jaccard_2',
'jaccard_4',
'jaccard_8',
'jaccard_16',
'pts_within_1',
'pts_within_2',
'pts_within_4',
'pts_within_8',
'pts_within_16',
]
header = (
'AJ & $<\\delta^{x}_{avg}$ & OA & Jac. $\\delta^{0}$ & '
+ 'Jac. $\\delta^{1}$ & Jac. $\\delta^{2}$ & '
+ 'Jac. $\\delta^{3}$ & Jac. $\\delta^{4}$ & $<\\delta^{0}$ & '
+ '$<\\delta^{1}$ & $<\\delta^{2}$ & $<\\delta^{3}$ & '
+ '$<\\delta^{4}$'
)
else:
latex_fields = ['PCK@0.1', 'PCK@0.2', 'PCK@0.3', 'PCK@0.4', 'PCK@0.5']
header = ' & '.join(latex_fields)
body = ' & '.join(
[f'{float(np.array(mean_scalars[x]*100)):.3}' for x in latex_fields]
)
return '\n'.join([header, body])
def sample_queries_strided(
target_occluded: np.ndarray,
target_points: np.ndarray,
frames: np.ndarray,
query_stride: int = 5,
) -> Mapping[str, np.ndarray]:
"""Package a set of frames and tracks for use in TAPNet evaluations.
Given a set of frames and tracks with no query points, sample queries
strided every query_stride frames, ignoring points that are not visible
at the selected frames.
Args:
target_occluded: Boolean occlusion flag, of shape [n_tracks, n_frames],
where True indicates occluded.
target_points: Position, of shape [n_tracks, n_frames, 2], where each point
is [x,y] scaled between 0 and 1.
frames: Video tensor, of shape [n_frames, height, width, 3]. Scaled between
-1 and 1.
query_stride: When sampling query points, search for un-occluded points
every query_stride frames and convert each one into a query.
Returns:
A dict with the keys:
video: Video tensor of shape [1, n_frames, height, width, 3]. The video
has floats scaled to the range [-1, 1].
query_points: Query points of shape [1, n_queries, 3] where
each point is [t, y, x] scaled to the range [-1, 1].
target_points: Target points of shape [1, n_queries, n_frames, 2] where
each point is [x, y] scaled to the range [-1, 1].
trackgroup: Index of the original track that each query point was
sampled from. This is useful for visualization.
"""
tracks = []
occs = []
queries = []
trackgroups = []
total = 0
trackgroup = np.arange(target_occluded.shape[0])
for i in range(0, target_occluded.shape[1], query_stride):
mask = target_occluded[:, i] == 0
query = np.stack(
[
i * np.ones(target_occluded.shape[0:1]),
target_points[:, i, 1],
target_points[:, i, 0],
],
axis=-1,
)
queries.append(query[mask])
tracks.append(target_points[mask])
occs.append(target_occluded[mask])
trackgroups.append(trackgroup[mask])
total += np.array(np.sum(target_occluded[:, i] == 0))
return {
'video': frames[np.newaxis, ...],
'query_points': np.concatenate(queries, axis=0)[np.newaxis, ...],
'target_points': np.concatenate(tracks, axis=0)[np.newaxis, ...],
'occluded': np.concatenate(occs, axis=0)[np.newaxis, ...],
'trackgroup': np.concatenate(trackgroups, axis=0)[np.newaxis, ...],
}
def sample_queries_first(
target_occluded: np.ndarray,
target_points: np.ndarray,
frames: np.ndarray,
) -> Mapping[str, np.ndarray]:
"""Package a set of frames and tracks for use in TAPNet evaluations.
Given a set of frames and tracks with no query points, use the first
visible point in each track as the query.
Args:
target_occluded: Boolean occlusion flag, of shape [n_tracks, n_frames],
where True indicates occluded.
target_points: Position, of shape [n_tracks, n_frames, 2], where each point
is [x,y] scaled between 0 and 1.
frames: Video tensor, of shape [n_frames, height, width, 3]. Scaled between
-1 and 1.
Returns:
A dict with the keys:
video: Video tensor of shape [1, n_frames, height, width, 3]
query_points: Query points of shape [1, n_queries, 3] where
each point is [t, y, x] scaled to the range [-1, 1]
target_points: Target points of shape [1, n_queries, n_frames, 2] where
each point is [x, y] scaled to the range [-1, 1]
"""
valid = np.sum(~target_occluded, axis=1) > 0
target_points = target_points[valid, :]
target_occluded = target_occluded[valid, :]
query_points = []
for i in range(target_points.shape[0]):
index = np.where(target_occluded[i] == 0)[0][0]
x, y = target_points[i, index, 0], target_points[i, index, 1]
query_points.append(np.array([index, y, x])) # [t, y, x]
query_points = np.stack(query_points, axis=0)
return {
'video': frames[np.newaxis, ...],
'query_points': query_points[np.newaxis, ...],
'target_points': target_points[np.newaxis, ...],
'occluded': target_occluded[np.newaxis, ...],
}
def create_jhmdb_dataset(
jhmdb_path: str, resolution: Optional[Tuple[int, int]] = (256, 256)
) -> Iterable[DatasetElement]:
"""JHMDB dataset, including fields required for PCK evaluation."""
videos = []
for file in tf.io.gfile.listdir(path.join(gt_dir, 'splits')):
# JHMDB file containing the first split, which is standard for this type of
# evaluation.
if not file.endswith('split1.txt'):
continue
video_folder = '_'.join(file.split('_')[:-2])
for video in tf.io.gfile.GFile(path.join(gt_dir, 'splits', file), 'r'):
video, traintest = video.split()
video, _ = video.split('.')
traintest = int(traintest)
video_path = path.join(video_folder, video)
if traintest == 2:
videos.append(video_path)
if not videos:
raise ValueError('No JHMDB videos found in directory ' + str(jhmdb_path))
# Shuffle so numbers converge faster.
random.shuffle(videos)
for video in videos:
logging.info(video)
joints = path.join(gt_dir, 'joint_positions', video, 'joint_positions.mat')
if not tf.io.gfile.exists(joints):
logging.info('skip %s', video)
continue
gt_pose = sio.loadmat(tf.io.gfile.GFile(joints, 'rb'))['pos_img']
gt_pose = np.transpose(gt_pose, [1, 2, 0])
frames = path.join(gt_dir, 'Rename_Images', video, '*.png')
framefil = tf.io.gfile.glob(frames)
framefil.sort()
def read_frame(f):
im = Image.open(tf.io.gfile.GFile(f, 'rb'))
im = im.convert('RGB')
im_data = np.array(im.getdata(), np.uint8)
return im_data.reshape([im.size[1], im.size[0], 3])
frames = [read_frame(x) for x in framefil]
frames = np.stack(frames)
height = frames.shape[1]
width = frames.shape[2]
invalid_x = np.logical_or(
gt_pose[:, 0:1, 0] < 0,
gt_pose[:, 0:1, 0] >= width,
)
invalid_y = np.logical_or(
gt_pose[:, 0:1, 1] < 0,
gt_pose[:, 0:1, 1] >= height,
)
invalid = np.logical_or(invalid_x, invalid_y)
invalid = np.tile(invalid, [1, gt_pose.shape[1]])
invalid = invalid[:, :, np.newaxis].astype(np.float32)
gt_pose_orig = gt_pose
if resolution is not None and resolution != frames.shape[1:3]:
frames = resize_video(frames, resolution)
frames = frames / (255.0 / 2.0) - 1.0
queries = gt_pose[:, 0]
queries = np.concatenate(
[queries[..., 0:1] * 0, queries[..., ::-1]],
axis=-1,
)
gt_pose = convert_grid_coordinates(
gt_pose,
np.array([width, height]),
np.array([frames.shape[2], frames.shape[1]]),
)
# Set invalid poses to -1 (outside the frame)
gt_pose = (1.0 - invalid) * gt_pose + invalid * (-1.0)
if gt_pose.shape[1] < frames.shape[0]:
# Some videos have pose sequences that are shorter than the frame
# sequence (usually because the person disappears). In this case,
# truncate the video.
logging.warning('short video!!')
frames = frames[: gt_pose.shape[1]]
converted = {
'video': frames[np.newaxis, ...],
'query_points': queries[np.newaxis, ...],
'target_points': gt_pose[np.newaxis, ...],
'gt_pose': gt_pose[np.newaxis, ...],
'gt_pose_orig': gt_pose_orig[np.newaxis, ...],
'occluded': gt_pose[np.newaxis, ..., 0] * 0,
'fname': video,
'im_size': np.array([height, width]),
}
yield {'jhmdb': converted}
def create_kubric_eval_train_dataset(
mode: str,
train_size: Tuple[int, int] = (256, 256),
max_dataset_size: int = 100,
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on Kubric training data."""
# Lazy import kubric because requirements_inference doesn't include it.
from kubric.challenges.point_tracking import dataset
res = dataset.create_point_tracking_dataset(
split='train',
train_size=train_size,
batch_dims=[1],
shuffle_buffer_size=None,
repeat=False,
vflip='vflip' in mode,
random_crop=False,
)
np_ds = tfds.as_numpy(res)
num_returned = 0
for data in np_ds:
if num_returned >= max_dataset_size:
break
num_returned += 1
yield {'kubric': data}
def create_kubric_eval_dataset(
mode: str, train_size: Tuple[int, int] = (256, 256)
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on Kubric val data."""
# Lazy import kubric because requirements_inference doesn't include it.
from kubric.challenges.point_tracking import dataset
res = dataset.create_point_tracking_dataset(
split='validation',
train_size=train_size,
batch_dims=[1],
shuffle_buffer_size=None,
repeat=False,
vflip='vflip' in mode,
random_crop=False,
)
np_ds = tfds.as_numpy(res)
for data in np_ds:
yield {'kubric': data}
def create_davis_dataset(
davis_points_path: str,
query_mode: str = 'strided',
full_resolution=False,
resolution: Optional[Tuple[int, int]] = (256, 256),
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on DAVIS data."""
pickle_path = davis_points_path
with tf.io.gfile.GFile(pickle_path, 'rb') as f:
davis_points_dataset = pickle.load(f)
if full_resolution:
ds, _ = tfds.load(
'davis/full_resolution', split='validation', with_info=True
)
to_iterate = tfds.as_numpy(ds)
else:
to_iterate = davis_points_dataset.keys()
for tmp in to_iterate:
if full_resolution:
frames = tmp['video']['frames']
video_name = tmp['metadata']['video_name'].decode()
else:
video_name = tmp
frames = davis_points_dataset[video_name]['video']
if resolution is not None and resolution != frames.shape[1:3]:
frames = resize_video(frames, resolution)
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
target_points = davis_points_dataset[video_name]['points']
target_occ = davis_points_dataset[video_name]['occluded']
target_points = target_points * np.array([frames.shape[2], frames.shape[1]])
if query_mode == 'strided':
converted = sample_queries_strided(target_occ, target_points, frames)
elif query_mode == 'first':
converted = sample_queries_first(target_occ, target_points, frames)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {'davis': converted}
def create_rgb_stacking_dataset(
robotics_points_path: str,
query_mode: str = 'strided',
resolution: Optional[Tuple[int, int]] = (256, 256),
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on robotics data."""
pickle_path = robotics_points_path
with tf.io.gfile.GFile(pickle_path, 'rb') as f:
robotics_points_dataset = pickle.load(f)
for example in robotics_points_dataset:
frames = example['video']
if resolution is not None and resolution != frames.shape[1:3]:
frames = resize_video(frames, resolution)
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
target_points = example['points']
target_occ = example['occluded']
target_points = target_points * np.array([frames.shape[2], frames.shape[1]])
if query_mode == 'strided':
converted = sample_queries_strided(target_occ, target_points, frames)
elif query_mode == 'first':
converted = sample_queries_first(target_occ, target_points, frames)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {'robotics': converted}
def create_kinetics_dataset(
kinetics_path: str, query_mode: str = 'strided',
resolution: Optional[Tuple[int, int]] = (256, 256),
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on Kinetics point tracking."""
all_paths = tf.io.gfile.glob(path.join(kinetics_path, '*_of_0010.pkl'))
for pickle_path in all_paths:
with open(pickle_path, 'rb') as f:
data = pickle.load(f)
if isinstance(data, dict):
data = list(data.values())
# idx = random.randint(0, len(data) - 1)
for idx in range(len(data)):
example = data[idx]
frames = example['video']
if isinstance(frames[0], bytes):
# TAP-Vid is stored and JPEG bytes rather than `np.ndarray`s.
def decode(frame):
byteio = io.BytesIO(frame)
img = Image.open(byteio)
return np.array(img)
frames = np.array([decode(frame) for frame in frames])
if resolution is not None and resolution != frames.shape[1:3]:
frames = resize_video(frames, resolution)
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
target_points = example['points']
target_occ = example['occluded']
target_points *= np.array([frames.shape[2], frames.shape[1]])
if query_mode == 'strided':
converted = sample_queries_strided(target_occ, target_points, frames)
elif query_mode == 'first':
converted = sample_queries_first(target_occ, target_points, frames)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {'kinetics': converted}
def create_robotap_dataset(
robotics_points_path: str,
query_mode: str = 'strided',
resolution: Optional[Tuple[int, int]] = (256, 256),
) -> Iterable[DatasetElement]:
"""Dataset for evaluating performance on robotics data."""
pickle_path = robotics_points_path
# with tf.io.gfile.GFile(pickle_path, 'rb') as f:
# robotics_points_dataset = pickle.load(f)
robotics_points_dataset = []
all_paths = tf.io.gfile.glob(path.join(robotics_points_path, '*.pkl'))
for pickle_path in all_paths:
with open(pickle_path, 'rb') as f:
data = pickle.load(f)
robotics_points_dataset.extend(data.values())
for example in robotics_points_dataset:
frames = example['video']
if resolution is not None and resolution != frames.shape[1:3]:
frames = resize_video(frames, resolution)
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
target_points = example['points']
target_occ = example['occluded']
target_points = target_points * np.array([frames.shape[2], frames.shape[1]])
if query_mode == 'strided':
converted = sample_queries_strided(target_occ, target_points, frames)
elif query_mode == 'first':
converted = sample_queries_first(target_occ, target_points, frames)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {'robotap': converted}
def create_csv_dataset(
dataset_name: str,
csv_path: str,
video_base_path: str,
query_mode: str = 'strided',
resolution: Optional[Tuple[int, int]] = (256, 256),
max_video_frames: Optional[int] = 1000,
) -> Iterable[DatasetElement]:
"""Create an evaluation iterator out of human annotations and videos.
Args:
dataset_name: Name to the dataset.
csv_path: Path to annotations csv.
video_base_path: Path to annotated videos.
query_mode: sample query points from first frame or strided.
resolution: The video resolution in (height, width).
max_video_frames: Max length of annotated video.
Yields:
Samples for evaluation.
"""
point_tracks_all = dict()
with tf.io.gfile.GFile(csv_path, 'r') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
video_id = row[0]
point_tracks = np.array(row[1:]).reshape(-1, 3)
if video_id in point_tracks_all:
point_tracks_all[video_id].append(point_tracks)
else:
point_tracks_all[video_id] = [point_tracks]
for video_id in point_tracks_all:
if video_id.endswith('.mp4'):
video_path = path.join(video_base_path, video_id)
else:
video_path = path.join(video_base_path, video_id + '.mp4')
frames = media.read_video(video_path)
if resolution is not None and resolution != frames.shape[1:3]:
frames = media.resize_video(frames, resolution)
frames = frames.astype(np.float32) / 255.0 * 2.0 - 1.0
point_tracks = np.stack(point_tracks_all[video_id], axis=0)
point_tracks = point_tracks.astype(np.float32)
if frames.shape[0] < point_tracks.shape[1]:
logging.info('Warning: short video!')
point_tracks = point_tracks[:, : frames.shape[0]]
point_tracks, occluded = point_tracks[..., 0:2], point_tracks[..., 2]
occluded = occluded > 0
target_points = point_tracks * np.array([frames.shape[2], frames.shape[1]])
num_splits = int(np.ceil(frames.shape[0] / max_video_frames))
if num_splits > 1:
print(f'Going to split the video {video_id} into {num_splits}')
for i in range(num_splits):
start_index = i * frames.shape[0] // num_splits
end_index = (i + 1) * frames.shape[0] // num_splits
sub_occluded = occluded[:, start_index:end_index]
sub_target_points = target_points[:, start_index:end_index]
sub_frames = frames[start_index:end_index]
if query_mode == 'strided':
converted = sample_queries_strided(
sub_occluded, sub_target_points, sub_frames
)
elif query_mode == 'first':
converted = sample_queries_first(
sub_occluded, sub_target_points, sub_frames
)
else:
raise ValueError(f'Unknown query mode {query_mode}.')
yield {dataset_name: converted}
import torch
from torch.utils.data import Dataset
class CustomDataset(Dataset):
def __init__(self, data_generator: Iterable[DatasetElement], key: str):
self.data = list(data_generator)
self.key = key
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx][self.key]
data = {k: torch.tensor(v)[0] if isinstance(v, np.ndarray) else v for k, v in data.items()}
# Convert double to float
data = {k: v.float() if v.dtype == torch.float64 else v for k, v in data.items()}
return data
def get_eval_dataset(mode, path, resolution=(256, 256)):
query_mode = 'first' if 'q_first' in mode else 'strided'
datasets = {}
if 'jhmdb' in mode:
key = 'jhmdb'
dataset = create_jhmdb_dataset(path[key], resolution)
datasets[key] = CustomDataset(dataset, key)
if 'davis' in mode:
key = 'davis'
dataset = create_davis_dataset(path[key], query_mode, False, resolution=resolution)
datasets[key] = CustomDataset(dataset, key)
if 'robotics' in mode:
key = 'robotics'
dataset = create_rgb_stacking_dataset(path[key], query_mode, resolution)
datasets[key] = CustomDataset(dataset, key)
if 'kinetics' in mode:
key = 'kinetics'
dataset = create_kinetics_dataset(path[key], query_mode, resolution)
datasets[key] = CustomDataset(dataset, key)
if 'robotap' in mode:
key = 'robotap'
dataset = create_robotap_dataset(path[key], query_mode, resolution)
datasets[key] = CustomDataset(dataset, key)
if len(datasets) == 0:
raise ValueError(f'No dataset found for mode {mode}.')
return datasets
if __name__ == '__main__':
# Disable all GPUS
tf.config.set_visible_devices([], 'GPU')
visible_devices = tf.config.get_visible_devices()
for device in visible_devices:
assert device.device_type != 'GPU'
dataset_name = 'davis'
dataset_path = '/media/data2/PointTracking/tapvid/tapnet_dataset/tapvid_davis/tapvid_davis.pkl'
dataset = get_eval_dataset(dataset_name, dataset_path, 'strided', (256, 256))
breakpoint()
pass |