File size: 6,232 Bytes
f1586f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import Sequence, Optional

import torch
import torch.nn.functional as F

from models.utils import convert_grid_coordinates
from data.evaluation_datasets import compute_tapvid_metrics

def huber_loss(tracks, target_points, occluded, delta=4.0, reduction_axes=(1, 2)):
    """Huber loss for point trajectories."""
    error = tracks - target_points
    distsqr = torch.sum(error ** 2, dim=-1)
    dist = torch.sqrt(distsqr + 1e-12)  # add eps to prevent nan
    loss_huber = torch.where(dist < delta, distsqr / 2, delta * (torch.abs(dist) - delta / 2))
    loss_huber = loss_huber * (1.0 - occluded.float())

    if reduction_axes:
        loss_huber = torch.mean(loss_huber, dim=reduction_axes)

    return loss_huber

def prob_loss(tracks, expd, target_points, occluded, expected_dist_thresh=8.0, reduction_axes=(1, 2)):
    """Loss for classifying if a point is within pixel threshold of its target."""
    err = torch.sum((tracks - target_points) ** 2, dim=-1)
    invalid = (err > expected_dist_thresh ** 2).float()
    logprob = F.binary_cross_entropy_with_logits(expd, invalid, reduction='none')
    logprob = logprob * (1.0 - occluded.float())
    
    if reduction_axes:
        logprob = torch.mean(logprob, dim=reduction_axes)
        
    return logprob

def tapnet_loss(points, occlusion, target_points, target_occ, shape, mask=None, expected_dist=None,
                position_loss_weight=0.05, expected_dist_thresh=6.0, huber_loss_delta=4.0, 
                rebalance_factor=None, occlusion_loss_mask=None):
    """TAPNet loss."""
    
    if mask is None:
        mask = torch.tensor(1.0)

    points = convert_grid_coordinates(points, shape[3:1:-1], (256, 256), coordinate_format='xy')
    target_points = convert_grid_coordinates(target_points, shape[3:1:-1], (256, 256), coordinate_format='xy')

    loss_huber = huber_loss(points, target_points, target_occ, delta=huber_loss_delta, reduction_axes=None) * mask
    loss_huber = torch.mean(loss_huber) * position_loss_weight

    if expected_dist is None:
        loss_prob = torch.tensor(0.0)
    else:
        loss_prob = prob_loss(points.detach(), expected_dist, target_points, target_occ, expected_dist_thresh, reduction_axes=None) * mask
        loss_prob = torch.mean(loss_prob)

    target_occ = target_occ.to(dtype=occlusion.dtype)
    loss_occ = F.binary_cross_entropy_with_logits(occlusion, target_occ, reduction='none') * mask

    if rebalance_factor is not None:
        loss_occ = loss_occ * ((1 + rebalance_factor) - rebalance_factor * target_occ)
        
    if occlusion_loss_mask is not None:
        loss_occ = loss_occ * occlusion_loss_mask

    loss_occ = torch.mean(loss_occ)

    return loss_huber, loss_occ, loss_prob


def tapir_loss(
    batch, 
    output,
    position_loss_weight=0.05,
    expected_dist_thresh=6.0,
):
    loss_scalars = {}
    loss_huber, loss_occ, loss_prob = tapnet_loss(
        output['tracks'],
        output['occlusion'],
        batch['target_points'],
        batch['occluded'],
        batch['video'].shape,  # pytype: disable=attribute-error  # numpy-scalars
        expected_dist=output['expected_dist']
        if 'expected_dist' in output
        else None,
        position_loss_weight=position_loss_weight,
        expected_dist_thresh=expected_dist_thresh,
    )
    loss = loss_huber + loss_occ + loss_prob
    loss_scalars['position_loss'] = loss_huber
    loss_scalars['occlusion_loss'] = loss_occ
    if 'expected_dist' in output:
        loss_scalars['prob_loss'] = loss_prob

    if 'unrefined_tracks' in output:
        for l in range(len(output['unrefined_tracks'])):
            loss_huber, loss_occ, loss_prob = tapnet_loss(
                output['unrefined_tracks'][l],
                output['unrefined_occlusion'][l],
                batch['target_points'],
                batch['occluded'],
                batch['video'].shape,  # pytype: disable=attribute-error  # numpy-scalars
                expected_dist=output['unrefined_expected_dist'][l]
                if 'unrefined_expected_dist' in output
                else None,
                position_loss_weight=position_loss_weight,
                expected_dist_thresh=expected_dist_thresh,
            )
            loss = loss + loss_huber + loss_occ + loss_prob
            loss_scalars[f'position_loss_{l}'] = loss_huber
            loss_scalars[f'occlusion_loss_{l}'] = loss_occ
            if 'unrefined_expected_dist' in output:
                loss_scalars[f'prob_loss_{l}'] = loss_prob

    loss_scalars['loss'] = loss
    return loss, loss_scalars



def eval_batch(
    batch, 
    output, 
    eval_metrics_resolution = (256, 256),
    query_first = False,
):
    query_points = batch['query_points']
    query_points = convert_grid_coordinates(
        query_points,
        (1,) + batch['video'].shape[2:4],  # (1, height, width)
        (1,) + eval_metrics_resolution,  # (1, height, width)
        coordinate_format='tyx',
    )
    gt_target_points = batch['target_points']
    gt_target_points = convert_grid_coordinates(
        gt_target_points,
        batch['video'].shape[3:1:-1],  # (width, height)
        eval_metrics_resolution[::-1],  # (width, height)
        coordinate_format='xy',
    )
    gt_occluded = batch['occluded']

    tracks = output['tracks']
    tracks = convert_grid_coordinates(
        tracks,
        batch['video'].shape[3:1:-1],  # (width, height)
        eval_metrics_resolution[::-1],  # (width, height)
        coordinate_format='xy',
    )

    occlusion_logits = output['occlusion']
    pred_occ = torch.sigmoid(occlusion_logits)
    if 'expected_dist' in output:
        expected_dist = output['expected_dist']
        pred_occ = 1 - (1 - pred_occ) * (1 - torch.sigmoid(expected_dist))
    pred_occ = pred_occ > 0.5  # threshold

    query_mode = 'first' if query_first else 'strided'
    metrics = compute_tapvid_metrics(
        query_points=query_points.detach().cpu().numpy(),
        gt_occluded=gt_occluded.detach().cpu().numpy(),
        gt_tracks=gt_target_points.detach().cpu().numpy(),
        pred_occluded=pred_occ.detach().cpu().numpy(),
        pred_tracks=tracks.detach().cpu().numpy(),
        query_mode=query_mode,
    )

    return metrics