LocoTrack / locotrack_pytorch /experiment.py
Seokju Cho
initial commit
f1586f7
raw
history blame
9.83 kB
import os
import configparser
import argparse
import logging
from functools import partial
from typing import Any, Dict, Optional, Union
import lightning as L
from lightning.pytorch import seed_everything
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor, TQDMProgressBar
import torch
from torch.utils.data import DataLoader
from data.kubric_data import KubricData
from models.locotrack_model import LocoTrack
import model_utils
from data.evaluation_datasets import get_eval_dataset
class LocoTrackModel(L.LightningModule):
def __init__(
self,
model_kwargs: Optional[Dict[str, Any]] = None,
model_forward_kwargs: Optional[Dict[str, Any]] = None,
loss_name: Optional[str] = 'tapir_loss',
loss_kwargs: Optional[Dict[str, Any]] = None,
query_first: Optional[bool] = False,
optimizer_name: Optional[str] = 'Adam',
optimizer_kwargs: Optional[Dict[str, Any]] = None,
scheduler_name: Optional[str] = 'OneCycleLR',
scheduler_kwargs: Optional[Dict[str, Any]] = None,
):
super().__init__()
self.model = LocoTrack(**(model_kwargs or {}))
self.model_forward_kwargs = model_forward_kwargs or {}
self.loss = partial(model_utils.__dict__[loss_name], **(loss_kwargs or {}))
self.query_first = query_first
self.optimizer_name = optimizer_name
self.optimizer_kwargs = optimizer_kwargs or {'lr': 2e-3}
self.scheduler_name = scheduler_name
self.scheduler_kwargs = scheduler_kwargs or {'max_lr': 2e-3, 'pct_start': 0.05, 'total_steps': 300000}
def training_step(self, batch, batch_idx):
output = self.model(batch['video'], batch['query_points'], **self.model_forward_kwargs)
loss, loss_scalars = self.loss(batch, output)
self.log_dict(
{f'train/{k}': v.item() for k, v in loss_scalars.items()},
logger=True,
on_step=True,
sync_dist=True,
)
return loss
def validation_step(self, batch, batch_idx, dataloader_idx=None):
output = self.model(batch['video'], batch['query_points'], **self.model_forward_kwargs)
loss, loss_scalars = self.loss(batch, output)
metrics = model_utils.eval_batch(batch, output, query_first=self.query_first)
if self.trainer.global_rank == 0:
log_prefix = 'val/'
if dataloader_idx is not None:
log_prefix = f'val/data_{dataloader_idx}/'
self.log_dict(
{log_prefix + k: v for k, v in loss_scalars.items()},
logger=True,
rank_zero_only=True,
)
self.log_dict(
{log_prefix + k: v.item() for k, v in metrics.items()},
logger=True,
rank_zero_only=True,
)
logging.info(f"Batch {batch_idx}: {metrics}")
def test_step(self, batch, batch_idx, dataloader_idx=None):
output = self.model(batch['video'], batch['query_points'], **self.model_forward_kwargs)
loss, loss_scalars = self.loss(batch, output)
metrics = model_utils.eval_batch(batch, output, query_first=self.query_first)
if self.trainer.global_rank == 0:
log_prefix = 'test/'
if dataloader_idx is not None:
log_prefix = f'test/data_{dataloader_idx}/'
self.log_dict(
{log_prefix + k: v for k, v in loss_scalars.items()},
logger=True,
rank_zero_only=True,
)
self.log_dict(
{log_prefix + k: v.item() for k, v in metrics.items()},
logger=True,
rank_zero_only=True,
)
logging.info(f"Batch {batch_idx}: {metrics}")
def configure_optimizers(self):
weights = [p for n, p in self.named_parameters() if 'bias' not in n]
bias = [p for n, p in self.named_parameters() if 'bias' in n]
optimizer = torch.optim.__dict__[self.optimizer_name](
[
{'params': weights, **self.optimizer_kwargs},
{'params': bias, **self.optimizer_kwargs, 'weight_decay': 0.}
]
)
scheduler = torch.optim.lr_scheduler.__dict__[self.scheduler_name](optimizer, **self.scheduler_kwargs)
return [optimizer], [{"scheduler": scheduler, "interval": "step"}]
def train(
mode: str,
save_path: str,
val_dataset_path: str,
ckpt_path: str = None,
kubric_dir: str = '',
precision: str = '32',
batch_size: int = 1,
val_check_interval: Union[int, float] = 5000,
log_every_n_steps: int = 10,
gradient_clip_val: float = 1.0,
max_steps: int = 300_000,
model_kwargs: Optional[Dict[str, Any]] = None,
model_forward_kwargs: Optional[Dict[str, Any]] = None,
loss_name: str = 'tapir_loss',
loss_kwargs: Optional[Dict[str, Any]] = None,
optimizer_name: str = 'Adam',
optimizer_kwargs: Optional[Dict[str, Any]] = None,
scheduler_name: str = 'OneCycleLR',
scheduler_kwargs: Optional[Dict[str, Any]] = None,
# query_first: bool = False,
):
"""Train the LocoTrack model with specified configurations."""
seed_everything(42, workers=True)
model = LocoTrackModel(
model_kwargs=model_kwargs,
model_forward_kwargs=model_forward_kwargs,
loss_name=loss_name,
loss_kwargs=loss_kwargs,
query_first='q_first' in mode,
optimizer_name=optimizer_name,
optimizer_kwargs=optimizer_kwargs,
scheduler_name=scheduler_name,
scheduler_kwargs=scheduler_kwargs,
)
if ckpt_path is not None and 'train' in mode:
model.load_state_dict(torch.load(ckpt_path)['state_dict'])
logger = WandbLogger(project='LocoTrack_Pytorch', save_dir=save_path, id=os.path.basename(save_path))
lr_monitor = LearningRateMonitor(logging_interval='step')
checkpoint_callback = ModelCheckpoint(
dirpath=save_path,
save_last=True,
save_top_k=3,
mode="max",
monitor="val/average_pts_within_thresh",
auto_insert_metric_name=True,
save_on_train_epoch_end=False,
)
eval_dataset = get_eval_dataset(
mode=mode,
path=val_dataset_path,
)
eval_dataloder = {
k: DataLoader(
v,
batch_size=1,
shuffle=False,
) for k, v in eval_dataset.items()
}
if 'train' in mode:
trainer = L.Trainer(
strategy='ddp',
logger=logger,
precision=precision,
val_check_interval=val_check_interval,
log_every_n_steps=log_every_n_steps,
gradient_clip_val=gradient_clip_val,
max_steps=max_steps,
sync_batchnorm=True,
callbacks=[checkpoint_callback, lr_monitor],
)
train_dataloader = KubricData(
global_rank=trainer.global_rank,
data_dir=kubric_dir,
batch_size=batch_size * trainer.world_size,
)
trainer.fit(model, train_dataloader, eval_dataloder, ckpt_path=ckpt_path)
elif 'eval' in mode:
trainer = L.Trainer(strategy='ddp', logger=logger, precision=precision)
trainer.test(model, eval_dataloder, ckpt_path=ckpt_path)
else:
raise ValueError(f"Invalid mode: {mode}")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Train or evaluate the LocoTrack model.")
parser.add_argument('--config', type=str, default='config.ini', help="Path to the configuration file.")
parser.add_argument('--mode', type=str, required=True, help="Mode to run: 'train' or 'eval' with optional 'q_first' and the name of evaluation dataset.")
parser.add_argument('--ckpt_path', type=str, default=None, help="Path to the checkpoint file")
parser.add_argument('--save_path', type=str, default='snapshots', help="Path to save the logs and checkpoints.")
args = parser.parse_args()
config = configparser.ConfigParser()
config.read(args.config)
# Extract parameters from the config file
train_params = {
'mode': args.mode,
'ckpt_path': args.ckpt_path,
'save_path': args.save_path,
'val_dataset_path': eval(config.get('TRAINING', 'val_dataset_path', fallback='{}')),
'kubric_dir': config.get('TRAINING', 'kubric_dir', fallback=''),
'precision': config.get('TRAINING', 'precision', fallback='32'),
'batch_size': config.getint('TRAINING', 'batch_size', fallback=1),
'val_check_interval': config.getfloat('TRAINING', 'val_check_interval', fallback=5000),
'log_every_n_steps': config.getint('TRAINING', 'log_every_n_steps', fallback=10),
'gradient_clip_val': config.getfloat('TRAINING', 'gradient_clip_val', fallback=1.0),
'max_steps': config.getint('TRAINING', 'max_steps', fallback=300000),
'model_kwargs': eval(config.get('MODEL', 'model_kwargs', fallback='{}')),
'model_forward_kwargs': eval(config.get('MODEL', 'model_forward_kwargs', fallback='{}')),
'loss_name': config.get('LOSS', 'loss_name', fallback='tapir_loss'),
'loss_kwargs': eval(config.get('LOSS', 'loss_kwargs', fallback='{}')),
'optimizer_name': config.get('OPTIMIZER', 'optimizer_name', fallback='Adam'),
'optimizer_kwargs': eval(config.get('OPTIMIZER', 'optimizer_kwargs', fallback='{"lr": 2e-3}')),
'scheduler_name': config.get('SCHEDULER', 'scheduler_name', fallback='OneCycleLR'),
'scheduler_kwargs': eval(config.get('SCHEDULER', 'scheduler_kwargs', fallback='{"max_lr": 2e-3, "pct_start": 0.05, "total_steps": 300000}')),
}
train(**train_params)