from fastai.vision.all import * import gradio as gr # from fastbook import * # from fastdownload import download_url # def greet(name): # return "Hello " + name + "!!" # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch() def is_cat(x): return x[0].isupper() learn = load_learner("model.pkl") categories = ('Dog', 'Cat') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() example = ['cat.jpg', 'dog.jpg'] intr = gr.Interface(fn = classify_image, inputs=image, outputs=label, examples=example) intr.launch(inline=False)