Spaces:
Running
on
A10G
Running
on
A10G
File size: 1,283 Bytes
bdab1da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import torch
import numpy as np
def get_mel_from_wav(audio, _stft):
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
audio = torch.autograd.Variable(audio, requires_grad=False)
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
log_magnitudes_stft = (
torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
)
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
return melspec, log_magnitudes_stft, energy
# def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60):
# mel = torch.stack([mel])
# mel_decompress = _stft.spectral_de_normalize(mel)
# mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
# spec_from_mel_scaling = 1000
# spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis)
# spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
# spec_from_mel = spec_from_mel * spec_from_mel_scaling
# audio = griffin_lim(
# torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters
# )
# audio = audio.squeeze()
# audio = audio.cpu().numpy()
# audio_path = out_filename
# write(audio_path, _stft.sampling_rate, audio)
|