Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
import torch.nn as nn | |
from audioldm.clap.open_clip import create_model | |
from audioldm.clap.training.data import get_audio_features | |
import torchaudio | |
from transformers import RobertaTokenizer | |
import torch.nn.functional as F | |
class CLAPAudioEmbeddingClassifierFreev2(nn.Module): | |
def __init__( | |
self, | |
pretrained_path="", | |
key="class", | |
sampling_rate=16000, | |
embed_mode="audio", | |
amodel = "HTSAT-tiny", | |
unconditional_prob=0.1, | |
random_mute=False, | |
max_random_mute_portion=0.5, | |
training_mode=True, | |
): | |
super().__init__() | |
self.key = key | |
self.device = "cpu" | |
self.precision = "fp32" | |
self.amodel = amodel | |
self.tmodel = "roberta" # the best text encoder in our training | |
self.enable_fusion = False # False if you do not want to use the fusion model | |
self.fusion_type = "aff_2d" | |
self.pretrained = pretrained_path | |
self.embed_mode = embed_mode | |
self.embed_mode_orig = embed_mode | |
self.sampling_rate = sampling_rate | |
self.unconditional_prob = unconditional_prob | |
self.random_mute = random_mute | |
self.tokenize = RobertaTokenizer.from_pretrained("roberta-base") | |
self.max_random_mute_portion = max_random_mute_portion | |
self.training_mode = training_mode | |
self.model, self.model_cfg = create_model( | |
self.amodel, | |
self.tmodel, | |
self.pretrained, | |
precision=self.precision, | |
device=self.device, | |
enable_fusion=self.enable_fusion, | |
fusion_type=self.fusion_type, | |
) | |
for p in self.model.parameters(): | |
p.requires_grad = False | |
self.model.eval() | |
def get_unconditional_condition(self, batchsize): | |
self.unconditional_token = self.model.get_text_embedding( | |
self.tokenizer(["", ""]) | |
)[0:1] | |
return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0) | |
def batch_to_list(self, batch): | |
ret = [] | |
for i in range(batch.size(0)): | |
ret.append(batch[i]) | |
return ret | |
def make_decision(self, probability): | |
if float(torch.rand(1)) < probability: | |
return True | |
else: | |
return False | |
def random_uniform(self, start, end): | |
val = torch.rand(1).item() | |
return start + (end - start) * val | |
def _random_mute(self, waveform): | |
# waveform: [bs, t-steps] | |
t_steps = waveform.size(-1) | |
for i in range(waveform.size(0)): | |
mute_size = int( | |
self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion)) | |
) | |
mute_start = int(self.random_uniform(0, t_steps - mute_size)) | |
waveform[i, mute_start : mute_start + mute_size] = 0 | |
return waveform | |
def cos_similarity(self, waveform, text): | |
# waveform: [bs, t_steps] | |
with torch.no_grad(): | |
self.embed_mode = "audio" | |
audio_emb = self(waveform.cuda()) | |
self.embed_mode = "text" | |
text_emb = self(text) | |
similarity = F.cosine_similarity(audio_emb, text_emb, dim=2) | |
return similarity.squeeze() | |
def forward(self, batch, key=None): | |
# If you want this conditioner to be unconditional, set self.unconditional_prob = 1.0 | |
# If you want this conditioner to be fully conditional, set self.unconditional_prob = 0.0 | |
if self.model.training == True and not self.training_mode: | |
print( | |
"The pretrained CLAP model should always be in eval mode. Reloading model just in case you change the parameters." | |
) | |
self.model, self.model_cfg = create_model( | |
self.amodel, | |
self.tmodel, | |
self.pretrained, | |
precision=self.precision, | |
device="cuda", | |
enable_fusion=self.enable_fusion, | |
fusion_type=self.fusion_type, | |
) | |
for p in self.model.parameters(): | |
p.requires_grad = False | |
self.model.eval() | |
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode | |
if self.embed_mode == "audio": | |
with torch.no_grad(): | |
audio_dict_list = [] | |
assert ( | |
self.sampling_rate == 16000 | |
), "We only support 16000 sampling rate" | |
if self.random_mute: | |
batch = self._random_mute(batch) | |
# batch: [bs, 1, t-samples] | |
batch = torchaudio.functional.resample( | |
batch, orig_freq=self.sampling_rate, new_freq=48000 | |
) | |
for waveform in self.batch_to_list(batch): | |
audio_dict = {} | |
audio_dict = get_audio_features( | |
audio_dict, | |
waveform, | |
480000, | |
data_truncating="fusion", | |
data_filling="repeatpad", | |
audio_cfg=self.model_cfg["audio_cfg"], | |
) | |
audio_dict_list.append(audio_dict) | |
# [bs, 512] | |
embed = self.model.get_audio_embedding(audio_dict_list) | |
elif self.embed_mode == "text": | |
with torch.no_grad(): | |
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode | |
text_data = self.tokenizer(batch) | |
embed = self.model.get_text_embedding(text_data) | |
embed = embed.unsqueeze(1) | |
self.unconditional_token = self.model.get_text_embedding( | |
self.tokenizer(["", ""]) | |
)[0:1] | |
for i in range(embed.size(0)): | |
if self.make_decision(self.unconditional_prob): | |
embed[i] = self.unconditional_token | |
# [bs, 1, 512] | |
return embed.detach() | |
def tokenizer(self, text): | |
result = self.tokenize( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=512, | |
return_tensors="pt", | |
) | |
return {k: v.squeeze(0) for k, v in result.items()} | |