haoheliu commited on
Commit
d8595ba
·
verified ·
1 Parent(s): bf2ecd6

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +93 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import os
4
+ import librosa
5
+ import librosa.display
6
+ import matplotlib.pyplot as plt
7
+ from audiosr import build_model, super_resolution, save_wave
8
+ import tempfile
9
+ import numpy as np
10
+
11
+ # Set MPS device if available (for Mac M-Series GPUs)
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+
14
+ # Title and Description
15
+ st.title("AudioSR: Versatile Audio Super-Resolution")
16
+ st.write("""
17
+ Upload your low-resolution audio files, and AudioSR will enhance them to high fidelity!
18
+ Supports all types of audio (music, speech, sound effects, etc.) with arbitrary sampling rates.
19
+ """)
20
+
21
+ # Upload audio file
22
+ uploaded_file = st.file_uploader("Upload an audio file (WAV format)", type=["wav"])
23
+
24
+ # Model Parameters
25
+ st.sidebar.title("Model Parameters")
26
+ model_name = st.sidebar.selectbox("Select Model", ["basic", "speech"], index=0)
27
+ ddim_steps = st.sidebar.slider("DDIM Steps", min_value=10, max_value=100, value=50)
28
+ guidance_scale = st.sidebar.slider("Guidance Scale", min_value=1.0, max_value=10.0, value=3.5)
29
+ random_seed = st.sidebar.number_input("Random Seed", min_value=0, value=42, step=1)
30
+ latent_t_per_second = 12.8
31
+
32
+ # Helper function to plot spectrogram
33
+ def plot_spectrogram(audio_path, title):
34
+ y, sr = librosa.load(audio_path, sr=None)
35
+ S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=sr // 2)
36
+ S_dB = librosa.power_to_db(S, ref=np.max)
37
+
38
+ plt.figure(figsize=(10, 4))
39
+ librosa.display.specshow(S_dB, sr=sr, x_axis='time', y_axis='mel', fmax=sr // 2, cmap='viridis')
40
+ plt.colorbar(format='%+2.0f dB')
41
+ plt.title(title)
42
+ plt.tight_layout()
43
+ return plt
44
+
45
+ # Process Button
46
+ if uploaded_file and st.button("Enhance Audio"):
47
+ st.write("Processing audio...")
48
+
49
+ # Create temp directory for saving files
50
+ with tempfile.TemporaryDirectory() as tmp_dir:
51
+ input_path = os.path.join(tmp_dir, "input.wav")
52
+ output_path = os.path.join(tmp_dir, "output.wav")
53
+
54
+ # Save uploaded file locally
55
+ with open(input_path, "wb") as f:
56
+ f.write(uploaded_file.read())
57
+
58
+ # Plot input spectrogram
59
+ st.write("Input Audio Spectrogram:")
60
+ input_spectrogram = plot_spectrogram(input_path, title="Input Audio Spectrogram")
61
+ st.pyplot(input_spectrogram)
62
+
63
+ # Build and load the model
64
+ audiosr = build_model(model_name=model_name, device=device)
65
+
66
+ # Perform super-resolution
67
+ waveform = super_resolution(
68
+ audiosr,
69
+ input_path,
70
+ seed=random_seed,
71
+ guidance_scale=guidance_scale,
72
+ ddim_steps=ddim_steps,
73
+ latent_t_per_second=latent_t_per_second,
74
+ )
75
+
76
+ # Save enhanced audio
77
+ save_wave(waveform, inputpath=input_path, savepath=tmp_dir, name="output", samplerate=48000)
78
+
79
+ # Plot output spectrogram
80
+ st.write("Enhanced Audio Spectrogram:")
81
+ output_spectrogram = plot_spectrogram(output_path, title="Enhanced Audio Spectrogram")
82
+ st.pyplot(output_spectrogram)
83
+
84
+ # Display audio players and download link
85
+ st.audio(input_path, format="audio/wav")
86
+ st.write("Original Audio:")
87
+
88
+ st.audio(output_path, format="audio/wav")
89
+ st.write("Enhanced Audio:")
90
+ st.download_button("Download Enhanced Audio", data=open(output_path, "rb").read(), file_name="enhanced_audio.wav")
91
+
92
+ # Footer
93
+ st.write("Built with [Streamlit](https://streamlit.io) and [AudioSR](https://audioldm.github.io/audiosr)")
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ matplotlib
3
+ git+https://github.com/haoheliu/versatile_audio_super_resolution.git
4
+ streamlit