harshiv commited on
Commit
fc0ab1b
1 Parent(s): bc57cb2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import pandas as pd
3
+ import streamlit as st
4
+
5
+ # Load the trained model
6
+ model = pickle.load(open("data.pkl", "rb"))
7
+
8
+ # Define a function to predict user data
9
+ def predict_user_data(user_data):
10
+ user_df = pd.DataFrame(user_data, index=[0])
11
+ user_df = extract_features(user_df) # Assuming the extract_features function is defined elsewhere in your code
12
+ prediction = model.predict(user_df)[0]
13
+ return prediction
14
+
15
+ # Streamlit app layout
16
+ st.title("Fake or Genuine User Classifier")
17
+
18
+ # Get user input
19
+ user_statuses_count = st.number_input("Statuses Count", min_value=0)
20
+ user_followers_count = st.number_input("Followers Count", min_value=0)
21
+ user_friends_count = st.number_input("Friends Count", min_value=0)
22
+ user_favourites_count = st.number_input("Favourites Count", min_value=0)
23
+ user_listed_count = st.number_input("Listed Count", min_value=0)
24
+ user_name = st.text_input("Name")
25
+
26
+ # Get user input as a dictionary
27
+ user_data = {
28
+ "statuses_count": user_statuses_count,
29
+ "followers_count": user_followers_count,
30
+ "friends_count": user_friends_count,
31
+ "favourites_count": user_favourites_count,
32
+ "listed_count": user_listed_count,
33
+ "name": user_name,
34
+ }
35
+
36
+ # Predict if the user clicks the button
37
+ if st.button("Classify User"):
38
+ prediction = predict_user_data(user_data)
39
+ if prediction == 1:
40
+ st.success("The user is likely Genuine.")
41
+ else:
42
+ st.warning("The user is likely Fake.")
43
+