Spaces:
Paused
Paused
gokaygokay
commited on
Commit
•
4da2d90
1
Parent(s):
443a04d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
|
5 |
+
from diffusers.models import AutoencoderKL
|
6 |
+
from PIL import Image
|
7 |
+
from RealESRGAN import RealESRGAN
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import spaces
|
11 |
+
|
12 |
+
# Constants
|
13 |
+
SD15_WEIGHTS = "weights"
|
14 |
+
CONTROLNET_CACHE = "controlnet-cache"
|
15 |
+
SCHEDULERS = {
|
16 |
+
"DDIM": DDIMScheduler,
|
17 |
+
"DPMSolverMultistep": DPMSolverMultistepScheduler,
|
18 |
+
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler,
|
19 |
+
"K_EULER": EulerDiscreteScheduler,
|
20 |
+
}
|
21 |
+
|
22 |
+
# Function to download files
|
23 |
+
def download_file(url, folder_path, filename):
|
24 |
+
if not os.path.exists(folder_path):
|
25 |
+
os.makedirs(folder_path)
|
26 |
+
file_path = os.path.join(folder_path, filename)
|
27 |
+
|
28 |
+
if os.path.isfile(file_path):
|
29 |
+
print(f"File already exists: {file_path}")
|
30 |
+
else:
|
31 |
+
response = requests.get(url, stream=True)
|
32 |
+
if response.status_code == 200:
|
33 |
+
with open(file_path, 'wb') as file:
|
34 |
+
for chunk in response.iter_content(chunk_size=1024):
|
35 |
+
file.write(chunk)
|
36 |
+
print(f"File successfully downloaded and saved: {file_path}")
|
37 |
+
else:
|
38 |
+
print(f"Error downloading the file. Status code: {response.status_code}")
|
39 |
+
|
40 |
+
# Download necessary models and files
|
41 |
+
|
42 |
+
# MODEL
|
43 |
+
download_file(
|
44 |
+
"https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true",
|
45 |
+
"models/models/Stable-diffusion",
|
46 |
+
"juggernaut_reborn.safetensors"
|
47 |
+
)
|
48 |
+
|
49 |
+
# UPSCALER
|
50 |
+
|
51 |
+
download_file(
|
52 |
+
"https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true",
|
53 |
+
"models/upscalers/",
|
54 |
+
"RealESRGAN_x2.pth"
|
55 |
+
)
|
56 |
+
|
57 |
+
download_file(
|
58 |
+
"https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true",
|
59 |
+
"models/upscalers/",
|
60 |
+
"RealESRGAN_x4.pth"
|
61 |
+
)
|
62 |
+
|
63 |
+
# NEGATIVE
|
64 |
+
download_file(
|
65 |
+
"https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true",
|
66 |
+
"models/embeddings",
|
67 |
+
"verybadimagenegative_v1.3.pt"
|
68 |
+
)
|
69 |
+
download_file(
|
70 |
+
"https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true",
|
71 |
+
"models/embeddings",
|
72 |
+
"JuggernautNegative-neg.pt"
|
73 |
+
)
|
74 |
+
|
75 |
+
# LORA
|
76 |
+
|
77 |
+
download_file(
|
78 |
+
"https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true",
|
79 |
+
"models/Lora",
|
80 |
+
"SDXLrender_v2.0.safetensors"
|
81 |
+
)
|
82 |
+
download_file(
|
83 |
+
"https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true",
|
84 |
+
"models/Lora",
|
85 |
+
"more_details.safetensors"
|
86 |
+
)
|
87 |
+
|
88 |
+
# CONTROLNET
|
89 |
+
|
90 |
+
download_file(
|
91 |
+
"https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true",
|
92 |
+
"models/ControlNet",
|
93 |
+
"control_v11f1e_sd15_tile.pth"
|
94 |
+
)
|
95 |
+
|
96 |
+
# VAE
|
97 |
+
|
98 |
+
download_file(
|
99 |
+
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true",
|
100 |
+
"models/VAE",
|
101 |
+
"vae-ft-mse-840000-ema-pruned.safetensors"
|
102 |
+
)
|
103 |
+
|
104 |
+
# Set up the device
|
105 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
106 |
+
|
107 |
+
# Load ControlNet model
|
108 |
+
controlnet = ControlNetModel.from_pretrained(
|
109 |
+
"lllyasviel/control_v11f1e_sd15_tile", torch_dtype=torch.float16
|
110 |
+
)
|
111 |
+
|
112 |
+
# Load the Stable Diffusion pipeline with Juggernaut Reborn model
|
113 |
+
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
|
114 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
|
115 |
+
model_path,
|
116 |
+
controlnet=controlnet,
|
117 |
+
torch_dtype=torch.float16,
|
118 |
+
use_safetensors=True
|
119 |
+
)
|
120 |
+
|
121 |
+
# Load and set VAE
|
122 |
+
vae = AutoencoderKL.from_single_file(
|
123 |
+
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
|
124 |
+
torch_dtype=torch.float16
|
125 |
+
)
|
126 |
+
pipe.vae = vae
|
127 |
+
|
128 |
+
|
129 |
+
# Load embeddings and LoRA models
|
130 |
+
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
131 |
+
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
132 |
+
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
133 |
+
pipe.fuse_lora(lora_scale=0.5)
|
134 |
+
pipe.load_lora_weights("models/Lora/more_details.safetensors")
|
135 |
+
# Set up the scheduler
|
136 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
137 |
+
|
138 |
+
# Move the pipeline to the device and enable memory efficient attention
|
139 |
+
pipe = pipe.to(device)
|
140 |
+
pipe.enable_xformers_memory_efficient_attention()
|
141 |
+
|
142 |
+
# Enable FreeU
|
143 |
+
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
144 |
+
|
145 |
+
def resize_and_upscale(input_image, resolution):
|
146 |
+
scale = 2
|
147 |
+
if resolution == 2048:
|
148 |
+
init_w = 1024
|
149 |
+
elif resolution == 2560:
|
150 |
+
init_w = 1280
|
151 |
+
elif resolution == 3072:
|
152 |
+
init_w = 1536
|
153 |
+
else:
|
154 |
+
init_w = 1024
|
155 |
+
scale = 4
|
156 |
+
|
157 |
+
input_image = input_image.convert("RGB")
|
158 |
+
W, H = input_image.size
|
159 |
+
k = float(init_w) / min(H, W)
|
160 |
+
H *= k
|
161 |
+
W *= k
|
162 |
+
H = int(round(H / 64.0)) * 64
|
163 |
+
W = int(round(W / 64.0)) * 64
|
164 |
+
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
165 |
+
model = RealESRGAN(device, scale=scale)
|
166 |
+
model.load_weights(f'models/upscalers/RealESRGAN_x{scale}.pth', download=False)
|
167 |
+
img = model.predict(img)
|
168 |
+
return img
|
169 |
+
|
170 |
+
def calculate_brightness_factors(hdr_intensity):
|
171 |
+
factors = [1.0] * 9
|
172 |
+
if hdr_intensity > 0:
|
173 |
+
factors = [1.0 - 0.9 * hdr_intensity, 1.0 - 0.7 * hdr_intensity, 1.0 - 0.45 * hdr_intensity,
|
174 |
+
1.0 - 0.25 * hdr_intensity, 1.0, 1.0 + 0.2 * hdr_intensity,
|
175 |
+
1.0 + 0.4 * hdr_intensity, 1.0 + 0.6 * hdr_intensity, 1.0 + 0.8 * hdr_intensity]
|
176 |
+
return factors
|
177 |
+
|
178 |
+
def pil_to_cv(pil_image):
|
179 |
+
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
180 |
+
|
181 |
+
def adjust_brightness(cv_image, factor):
|
182 |
+
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
|
183 |
+
h, s, v = cv2.split(hsv_image)
|
184 |
+
v = np.clip(v * factor, 0, 255).astype('uint8')
|
185 |
+
adjusted_hsv = cv2.merge([h, s, v])
|
186 |
+
return cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR)
|
187 |
+
|
188 |
+
def create_hdr_effect(original_image, hdr):
|
189 |
+
cv_original = pil_to_cv(original_image)
|
190 |
+
brightness_factors = calculate_brightness_factors(hdr)
|
191 |
+
images = [adjust_brightness(cv_original, factor) for factor in brightness_factors]
|
192 |
+
|
193 |
+
merge_mertens = cv2.createMergeMertens()
|
194 |
+
hdr_image = merge_mertens.process(images)
|
195 |
+
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
196 |
+
hdr_image_pil = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
197 |
+
|
198 |
+
return hdr_image_pil
|
199 |
+
|
200 |
+
def process_image(input_image, prompt, negative_prompt, resolution=2048, num_inference_steps=50, guidance_scale=3, strength=0.35, hdr=0):
|
201 |
+
condition_image = resize_and_upscale(input_image, resolution)
|
202 |
+
condition_image = create_hdr_effect(condition_image, hdr)
|
203 |
+
|
204 |
+
result = pipe(
|
205 |
+
prompt=prompt,
|
206 |
+
negative_prompt=negative_prompt,
|
207 |
+
image=condition_image,
|
208 |
+
control_image=condition_image,
|
209 |
+
width=condition_image.size[0],
|
210 |
+
height=condition_image.size[1],
|
211 |
+
strength=strength,
|
212 |
+
num_inference_steps=num_inference_steps,
|
213 |
+
guidance_scale=guidance_scale,
|
214 |
+
generator=torch.manual_seed(0),
|
215 |
+
).images[0]
|
216 |
+
|
217 |
+
return result
|
218 |
+
|
219 |
+
@spaces.GPU
|
220 |
+
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
221 |
+
prompt = "masterpiece, best quality, highres"
|
222 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
223 |
+
result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr)
|
224 |
+
return result
|
225 |
+
|
226 |
+
# Simple options
|
227 |
+
simple_options = [
|
228 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
229 |
+
gr.inputs.Slider(minimum=2048, maximum=3072, step=512, default=2048, label="Resolution"),
|
230 |
+
gr.inputs.Slider(minimum=10, maximum=100, step=10, default=20, label="Inference Steps"),
|
231 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.05, default=0.35, label="Strength"),
|
232 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.1, default=0, label="HDR"),
|
233 |
+
gr.inputs.Slider(minimum=1, maximum=10, step=0.1, default=3, label="Guidance Scale")
|
234 |
+
]
|
235 |
+
|
236 |
+
# Create the Gradio interface
|
237 |
+
iface = gr.Interface(
|
238 |
+
fn=gradio_process_image,
|
239 |
+
inputs=simple_options,
|
240 |
+
outputs=gr.outputs.Image(type="pil", label="Output Image"),
|
241 |
+
title="Image Processing with Stable Diffusion",
|
242 |
+
description="Upload an image and adjust the settings to process it using Stable Diffusion."
|
243 |
+
)
|
244 |
+
|
245 |
+
iface.launch()
|