Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""myapp Widget""" | |
from typing import Literal | |
import argparse | |
#from datetime import datetime | |
import sys | |
import gradio as gr | |
import numpy as np | |
from src.utils import Stopwatch, get_package_version | |
from src.saliency import SaliencyMap, convert_colormap | |
from src.reporter import get_current_reporter | |
PROGRAM_NAME = 'SaliencyMapDemo' | |
__version__ = get_package_version() | |
log = get_current_reporter() | |
log.info("#アプリ起動中") | |
watch = Stopwatch.start_new() | |
def jet_tab_selected(image: np.ndarray): | |
""" | |
JETタブを選択時 | |
""" | |
#print(f"{datetime.now()}#jet") | |
saliency = SaliencyMap("SpectralResidual") | |
success, saliency_map = saliency.compute(image) | |
if not success: | |
return image # エラーが発生した場合は入力画像を返します。 | |
retval = convert_colormap(image, saliency_map, "jet") | |
#print(f"{datetime.now()}#jet") | |
return retval | |
def hot_tab_selected(image: np.ndarray): | |
""" | |
HOTタブを選択時 | |
""" | |
#print(f"{datetime.now()}#hot") | |
saliency = SaliencyMap("SpectralResidual") | |
success, saliency_map = saliency.compute(image) | |
if not success: | |
return image # エラーが発生した場合は入力画像を返します。 | |
retval = convert_colormap(image, saliency_map, "turbo") | |
#print(f"{datetime.now()}#hot") | |
return retval | |
def submit_clicked(image: np.ndarray, algorithm: Literal["SpectralResidual", "FineGrained"]): | |
""" | |
入力画像を元に顕著マップを計算します。 | |
Parameters: | |
image: 入力画像 | |
str: 顕著性マップのアルゴリズム | |
Returns: | |
np.ndarray: JET画像 | |
np.ndarray: HOT画像 | |
""" | |
#log.info(f"#submit_Clicked") | |
#watch = utils.Stopwatch.startNew() | |
# | |
saliency = SaliencyMap(algorithm) | |
success, saliency_map = saliency.compute(image) | |
# log.info(f"#SaliencyMap compute()") | |
if not success: | |
return image, image # エラーが発生した場合は入力画像を返します。 | |
# log.info(f"#jet") | |
jet = convert_colormap(image, saliency_map, "jet") | |
# jet = None | |
# log.info(f"#hot") | |
hot = convert_colormap(image, saliency_map, "hot") | |
saliency = None | |
#log.info(f"#submit_Clicked End{watch.stop():.3f}") | |
return jet, hot | |
def run_app(args: argparse.Namespace) -> None: | |
""" | |
アプリの画面を作成し、Gradioサービスを起動します。 | |
Parameters: | |
args: コマンドライン引数 | |
watch: 起動したスタート時間 | |
""" | |
# analytics_enabled=False | |
# https://github.com/gradio-app/gradio/issues/4226 | |
with gr.Blocks( | |
analytics_enabled=False, | |
title=f"{PROGRAM_NAME} {__version__}", | |
head=""" | |
<meta name="format-detection" content="telephone=no"> | |
<meta name="robots" content="noindex, nofollow, noarchive"> | |
<meta name="referrer" content="no-referrer" /> | |
""" | |
) as demo: | |
gr.Markdown(""" | |
# Saliency Map demo. | |
""") | |
with gr.Accordion("取り扱い説明書", open=False): | |
gr.Markdown(""" | |
1. inputタブで画像を選択します。 | |
2. Submitボタンを押します。 | |
3. 結果は、JETタブとHOTタブに表示します。 | |
""") | |
algorithm_type = gr.Radio( | |
["SpectralResidual", "FineGrained"], | |
label="Saliency", | |
value="SpectralResidual", | |
interactive=True | |
) | |
submit_button = gr.Button("submit", variant="primary") | |
with gr.Row(): | |
with gr.Tab("input", id="input"): | |
image_input = gr.Image(sources=["upload", "clipboard"], | |
interactive=True) | |
with gr.Tab("overlay(JET)"): | |
image_overlay_jet = gr.Image(interactive=False) | |
# tab_jet.select(jet_tab_selected, | |
# inputs=[image_input], | |
# outputs=image_overlay_jet) | |
with gr.Tab("overlay(HOT)"): | |
image_overlay_hot = gr.Image(interactive=False) | |
# tab_hot.select(hot_tab_selected, | |
# inputs=[image_input], | |
# outputs=image_overlay_hot, api_name=False) | |
# | |
submit_button.click( | |
submit_clicked, | |
inputs=[image_input, algorithm_type], | |
outputs=[image_overlay_jet, | |
image_overlay_hot] | |
) | |
gr.Markdown(f""" | |
Python {sys.version} | |
App {__version__} | |
""") | |
demo.queue(default_concurrency_limit=5) | |
log.info(f"#アプリ起動完了({watch.stop():.3f}s)") | |
# https://www.gradio.app/docs/gradio/blocks#blocks-launch | |
demo.launch( | |
inbrowser=args.inbrowser, | |
share=args.share, | |
server_port=args.server_port, | |
max_file_size=args.max_file_size, | |
) | |