|
import gradio as gr |
|
import edge_tts |
|
import asyncio |
|
import tempfile |
|
import numpy as np |
|
import soxr |
|
from pydub import AudioSegment |
|
import torch |
|
import sentencepiece as spm |
|
import onnxruntime as ort |
|
from huggingface_hub import hf_hub_download, InferenceClient |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import urllib |
|
import random |
|
import re |
|
|
|
|
|
_useragent_list = [ |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0' |
|
] |
|
|
|
def get_useragent(): |
|
"""Returns a random user agent from the list.""" |
|
return random.choice(_useragent_list) |
|
|
|
def extract_text_from_webpage(html_content): |
|
"""Extracts visible text from HTML content using BeautifulSoup.""" |
|
soup = BeautifulSoup(html_content, "html.parser") |
|
|
|
for tag in soup(["script", "style", "header", "footer", "nav"]): |
|
tag.extract() |
|
|
|
visible_text = soup.get_text(strip=True) |
|
visible_text = visible_text[:8000] |
|
return visible_text |
|
|
|
def search(term, num_results=2, timeout=5, ssl_verify=None): |
|
"""Performs a Google search and returns the results.""" |
|
escaped_term = urllib.parse.quote_plus(term) |
|
all_results = [] |
|
resp = requests.get( |
|
url="https://www.google.com/search", |
|
headers={"User-Agent": get_useragent()}, |
|
params={ |
|
"q": term, |
|
"num": num_results, |
|
"udm": 14, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
try: |
|
|
|
webpage = requests.get(link, headers={"User-Agent": get_useragent()}) |
|
webpage.raise_for_status() |
|
|
|
visible_text = extract_text_from_webpage(webpage.text) |
|
all_results.append({"link": link, "text": visible_text}) |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching or processing {link}: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
all_results.append({"link": None, "text": None}) |
|
print(all_results) |
|
return all_results |
|
|
|
|
|
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" |
|
sample_rate = 16000 |
|
|
|
|
|
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) |
|
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) |
|
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) |
|
|
|
|
|
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") |
|
system_instructions1 = "<s>[SYSTEM] Answer as OpenGPT 4o, Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" |
|
|
|
def resample(audio_fp32, sr): |
|
return soxr.resample(audio_fp32, sr, sample_rate) |
|
|
|
def to_float32(audio_buffer): |
|
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) |
|
|
|
def transcribe(audio_path): |
|
audio_file = AudioSegment.from_file(audio_path) |
|
sr = audio_file.frame_rate |
|
audio_buffer = np.array(audio_file.get_array_of_samples()) |
|
|
|
audio_fp32 = to_float32(audio_buffer) |
|
audio_16k = resample(audio_fp32, sr) |
|
|
|
input_signal = torch.tensor(audio_16k).unsqueeze(0) |
|
length = torch.tensor(len(audio_16k)).unsqueeze(0) |
|
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) |
|
|
|
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] |
|
|
|
blank_id = tokenizer.vocab_size() |
|
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] |
|
text = tokenizer.decode_ids(decoded_prediction) |
|
|
|
return text |
|
|
|
def model(text, web_search): |
|
if web_search is True: |
|
"""Performs a web search, feeds the results to a language model, and returns the answer.""" |
|
web_results = search(text) |
|
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results]) |
|
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]" |
|
stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False) |
|
return "".join([response.token.text for response in stream if response.token.text != "</s>"]) |
|
else: |
|
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" |
|
stream = client1.text_generation(formatted_prompt, max_new_tokens=300, stream=True, details=True, return_full_text=False) |
|
return "".join([response.token.text for response in stream if response.token.text != "</s>"]) |
|
|
|
async def respond(audio, web_search): |
|
user = transcribe(audio) |
|
reply = model(user, web_search) |
|
communicate = edge_tts.Communicate(reply) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
await communicate.save(tmp_path) |
|
return tmp_path |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Emotional Support\nHello! I'm here to support you emotionally and answer any questions. How are you feeling today?") |
|
gr.Markdown("<p style='color:green;'>Developed by Hashir Ehtisham</p>") |
|
|
|
with gr.Row(): |
|
web_search = gr.Checkbox(label="Web Search", value=False) |
|
input = gr.Audio(label="User Input", sources="microphone", type="filepath") |
|
output = gr.Audio(label="AI", autoplay=True) |
|
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=200).launch() |
|
|