Spaces:
Runtime error
Runtime error
added more necessary stuff
Browse files- .gitattributes +4 -0
- demo_files/ball_high.mp4 +0 -0
- demo_files/ball_in_dirt.mp4 +0 -0
- demo_files/ball_outside.mp4 +0 -0
- demo_files/downloaded_videos/Ball_cropped_video.mp4 +0 -0
- demo_files/downloaded_videos/Ball_demo_video.mp4 +3 -0
- demo_files/downloaded_videos/Strike_cropped_video.mp4 +0 -0
- demo_files/downloaded_videos/Strike_demo_video.mp4 +3 -0
- demo_files/downloaded_videos/cropped_video.mp4 +0 -0
- demo_files/downloaded_videos/demo_video.mp4 +3 -0
- demo_files/strike_high.mp4 +0 -0
- demo_files/strike_middle.mp4 +0 -0
- demo_files/strike_outside_corner.mp4 +0 -0
- mobilenet.py +447 -0
- picklebot_2m.csv +3 -0
- weights/MobileNetLarge.pth +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
demo_files/downloaded_videos/Ball_demo_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
demo_files/downloaded_videos/demo_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
demo_files/downloaded_videos/Strike_demo_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
picklebot_2m.csv filter=lfs diff=lfs merge=lfs -text
|
demo_files/ball_high.mp4
ADDED
Binary file (274 kB). View file
|
|
demo_files/ball_in_dirt.mp4
ADDED
Binary file (214 kB). View file
|
|
demo_files/ball_outside.mp4
ADDED
Binary file (290 kB). View file
|
|
demo_files/downloaded_videos/Ball_cropped_video.mp4
ADDED
Binary file (269 kB). View file
|
|
demo_files/downloaded_videos/Ball_demo_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f49ba1fa3f64f7abd4555c372833cf5b594806772516acf511a59b254c175372
|
3 |
+
size 7116147
|
demo_files/downloaded_videos/Strike_cropped_video.mp4
ADDED
Binary file (326 kB). View file
|
|
demo_files/downloaded_videos/Strike_demo_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8021464006fa91f0f529d0044075ab63a6fb251bbd849dcf25f925d16344a92
|
3 |
+
size 7753041
|
demo_files/downloaded_videos/cropped_video.mp4
ADDED
Binary file (212 kB). View file
|
|
demo_files/downloaded_videos/demo_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:411caea9714f16d6b302d6ad5f4565358acc706490134c0963c09f7828315572
|
3 |
+
size 5934043
|
demo_files/strike_high.mp4
ADDED
Binary file (126 kB). View file
|
|
demo_files/strike_middle.mp4
ADDED
Binary file (298 kB). View file
|
|
demo_files/strike_outside_corner.mp4
ADDED
Binary file (129 kB). View file
|
|
mobilenet.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Implementing Mobilenet v3 as seen in
|
3 |
+
"Searching for MobileNetV3" for video classification,
|
4 |
+
note that balls are 0 and strikes are 1.
|
5 |
+
'''
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.init as init
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
class SEBlock3D(nn.Module):
|
12 |
+
def __init__(self,channels):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
self.se = nn.Sequential(
|
16 |
+
nn.AdaptiveAvgPool3d(1),
|
17 |
+
nn.Conv3d(channels,channels//4,kernel_size=1),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
nn.Conv3d(channels//4,channels,kernel_size=1),
|
20 |
+
nn.Hardsigmoid()
|
21 |
+
)
|
22 |
+
|
23 |
+
def forward(self,x):
|
24 |
+
w = self.se(x)
|
25 |
+
x = x * w
|
26 |
+
return x
|
27 |
+
|
28 |
+
|
29 |
+
class SEBlock2D(nn.Module):
|
30 |
+
def __init__(self,channels):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.se = nn.Sequential(
|
34 |
+
nn.AdaptiveAvgPool2d(1),
|
35 |
+
nn.Conv2d(channels,channels//4,kernel_size=1),
|
36 |
+
nn.ReLU(inplace=True),
|
37 |
+
nn.Conv2d(channels//4,channels,kernel_size=1),
|
38 |
+
nn.Hardsigmoid()
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self,x):
|
42 |
+
w = self.se(x)
|
43 |
+
x = x * w
|
44 |
+
return x
|
45 |
+
|
46 |
+
#Bottleneck for Mobilenets
|
47 |
+
class Bottleneck3D(nn.Module):
|
48 |
+
def __init__(self, in_channels, out_channels, expanded_channels, stride=1, use_se=False, kernel_size=3,nonlinearity=nn.Hardswish(),batchnorm=True,dropout=0,bias=False):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
#pointwise conv1x1x1 (reduce channels)
|
52 |
+
self.pointwise_conv1 = nn.Conv3d(in_channels,expanded_channels,kernel_size=1,bias=bias)
|
53 |
+
#depthwise (spatial filtering)
|
54 |
+
#groups to preserve channel-wise information
|
55 |
+
self.depthwise_conv = nn.Conv3d(
|
56 |
+
expanded_channels,#in channels
|
57 |
+
expanded_channels,#out channels
|
58 |
+
groups=expanded_channels,
|
59 |
+
kernel_size=(1,kernel_size,kernel_size),
|
60 |
+
stride=stride,
|
61 |
+
padding=kernel_size//2,
|
62 |
+
bias=bias
|
63 |
+
)
|
64 |
+
#squeeze-and-excite (recalibrate channel wise)
|
65 |
+
self.squeeze_excite = SEBlock3D(expanded_channels) if use_se else None
|
66 |
+
#pointwise conv1x1x1 (expansion to increase channels)
|
67 |
+
self.pointwise_conv2 = nn.Conv3d(expanded_channels,out_channels,kernel_size=1,bias=bias)
|
68 |
+
self.batchnorm = nn.BatchNorm3d(out_channels) if batchnorm else None
|
69 |
+
self.nonlinearity = nonlinearity
|
70 |
+
self.dropout = nn.Dropout3d(p=dropout)
|
71 |
+
|
72 |
+
def forward(self,x):
|
73 |
+
x = self.pointwise_conv1(x)
|
74 |
+
x = self.depthwise_conv(x)
|
75 |
+
if self.squeeze_excite is not None:
|
76 |
+
x = self.squeeze_excite(x)
|
77 |
+
x = self.pointwise_conv2(x)
|
78 |
+
x = self.batchnorm(x)
|
79 |
+
x = self.nonlinearity(x)
|
80 |
+
x = self.dropout(x)
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
#2D bottleneck for our 2d convnet with LSTM
|
85 |
+
class Bottleneck2D(nn.Module):
|
86 |
+
def __init__(self, in_channels, out_channels, expanded_channels, stride=1, use_se=False, kernel_size=3,nonlinearity=nn.Hardswish(),batchnorm=True,dropout=0,bias=False):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
#pointwise conv1x1x1 (reduce channels)
|
90 |
+
self.pointwise_conv1 = nn.Conv2d(in_channels,expanded_channels,kernel_size=1,bias=bias)
|
91 |
+
#depthwise (spatial filtering)
|
92 |
+
#groups to preserve channel-wise information
|
93 |
+
self.depthwise_conv = nn.Conv2d(
|
94 |
+
expanded_channels,#in channels
|
95 |
+
expanded_channels,#out channels
|
96 |
+
groups=expanded_channels,
|
97 |
+
kernel_size=kernel_size,
|
98 |
+
stride=stride,
|
99 |
+
padding=kernel_size//2,
|
100 |
+
bias=bias
|
101 |
+
)
|
102 |
+
#squeeze-and-excite (recalibrate channel wise)
|
103 |
+
self.squeeze_excite = SEBlock2D(expanded_channels) if use_se else None
|
104 |
+
#pointwise conv1x1x1 (expansion to increase channels)
|
105 |
+
self.pointwise_conv2 = nn.Conv2d(expanded_channels,out_channels,kernel_size=1,bias=bias)
|
106 |
+
self.batchnorm = nn.BatchNorm2d(out_channels) if batchnorm else None
|
107 |
+
self.nonlinearity = nonlinearity
|
108 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
109 |
+
|
110 |
+
def forward(self,x):
|
111 |
+
x = self.pointwise_conv1(x)
|
112 |
+
x = self.depthwise_conv(x)
|
113 |
+
if self.squeeze_excite is not None:
|
114 |
+
x = self.squeeze_excite(x)
|
115 |
+
x = self.pointwise_conv2(x)
|
116 |
+
x = self.batchnorm(x)
|
117 |
+
x = self.nonlinearity(x)
|
118 |
+
return x
|
119 |
+
|
120 |
+
#mobilenet large 3d convolutions
|
121 |
+
class MobileNetLarge3D(nn.Module):
|
122 |
+
def __init__(self,num_classes=2):
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
self.num_classes = num_classes
|
126 |
+
|
127 |
+
#conv3d (h-swish): 224x224x3 -> 112x112x16
|
128 |
+
self.block1 = nn.Sequential(
|
129 |
+
nn.Conv3d(in_channels=3,out_channels=16,stride=2,kernel_size=3,padding=1),
|
130 |
+
nn.BatchNorm3d(16),
|
131 |
+
nn.Hardswish()
|
132 |
+
)
|
133 |
+
|
134 |
+
#3x3 bottlenecks1 (3, ReLU): 112x112x16 -> 56x56x24
|
135 |
+
self.block2 = nn.Sequential(
|
136 |
+
Bottleneck3D(in_channels=16,out_channels=16,expanded_channels=16,stride=1,nonlinearity=nn.ReLU(),dropout=0.2),
|
137 |
+
Bottleneck3D(in_channels=16,out_channels=24,expanded_channels=64,stride=2,nonlinearity=nn.ReLU(),dropout=0.2),
|
138 |
+
Bottleneck3D(in_channels=24,out_channels=24,expanded_channels=72,stride=1,nonlinearity=nn.ReLU(),dropout=0.2)
|
139 |
+
)
|
140 |
+
|
141 |
+
#5x5 bottlenecks1 (3, ReLU, squeeze-excite): 56x56x24 -> 28x28x40
|
142 |
+
self.block3 = nn.Sequential(
|
143 |
+
Bottleneck3D(in_channels=24,out_channels=40,expanded_channels=72,stride=2,use_se=True,kernel_size=5,nonlinearity=nn.ReLU(),dropout=0.2),
|
144 |
+
Bottleneck3D(in_channels=40,out_channels=40,expanded_channels=120,stride=1,use_se=True,kernel_size=5,nonlinearity=nn.ReLU(),dropout=0.2),
|
145 |
+
Bottleneck3D(in_channels=40,out_channels=40,expanded_channels=120,stride=1,use_se=True,kernel_size=5,nonlinearity=nn.ReLU(),dropout=0.2)
|
146 |
+
)
|
147 |
+
|
148 |
+
#3x3 bottlenecks2 (6, h-swish, last two get squeeze-excite): 28x28x40 -> 14x14x112
|
149 |
+
self.block4 = nn.Sequential(
|
150 |
+
Bottleneck3D(in_channels=40,out_channels=80,expanded_channels=240,stride=2,dropout=0.2),
|
151 |
+
Bottleneck3D(in_channels=80,out_channels=80,expanded_channels=240,stride=1,dropout=0.2),
|
152 |
+
Bottleneck3D(in_channels=80,out_channels=80,expanded_channels=184,stride=1,dropout=0.2),
|
153 |
+
Bottleneck3D(in_channels=80,out_channels=80,expanded_channels=184,stride=1,dropout=0.2),
|
154 |
+
Bottleneck3D(in_channels=80,out_channels=112,expanded_channels=480,stride=1,use_se=True,dropout=0.2),
|
155 |
+
Bottleneck3D(in_channels=112,out_channels=112,expanded_channels=672,stride=1,use_se=True,dropout=0.2)
|
156 |
+
)
|
157 |
+
|
158 |
+
#5x5 bottlenecks2 (3, h-swish, squeeze-excite): 14x14x112 -> 7x7x160
|
159 |
+
self.block5 = nn.Sequential(
|
160 |
+
Bottleneck3D(in_channels=112,out_channels=160,expanded_channels=672,stride=2,use_se=True,kernel_size=5,dropout=0.2),
|
161 |
+
Bottleneck3D(in_channels=160,out_channels=160,expanded_channels=960,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
162 |
+
Bottleneck3D(in_channels=160,out_channels=160,expanded_channels=960,stride=1,use_se=True,kernel_size=5,dropout=0.2)
|
163 |
+
)
|
164 |
+
|
165 |
+
#conv3d (h-swish), avg pool 7x7: 7x7x960 -> 1x1x960
|
166 |
+
self.block6 = nn.Sequential(
|
167 |
+
nn.Conv3d(in_channels=160,out_channels=960,stride=1,kernel_size=1),
|
168 |
+
nn.BatchNorm3d(960),
|
169 |
+
nn.Hardswish()
|
170 |
+
)
|
171 |
+
|
172 |
+
#classifier: conv3d 1x1 NBN (2, first uses h-swish): 1x1x960
|
173 |
+
self.classifier = nn.Sequential(
|
174 |
+
nn.AdaptiveAvgPool3d((1,1,1)),
|
175 |
+
nn.Conv3d(in_channels=960,out_channels=1280,kernel_size=1,stride=1,padding=0), #2 classes for ball/strike
|
176 |
+
nn.Hardswish(),
|
177 |
+
nn.Conv3d(in_channels=1280,out_channels=self.num_classes,kernel_size=1,stride=1,padding=0)
|
178 |
+
)
|
179 |
+
|
180 |
+
def forward(self,x):
|
181 |
+
x = self.block1(x)
|
182 |
+
x = self.block2(x)
|
183 |
+
x = self.block3(x)
|
184 |
+
x = self.block4(x)
|
185 |
+
x = self.block5(x)
|
186 |
+
x = self.block6(x)
|
187 |
+
x = self.classifier(x)
|
188 |
+
x = x.view(x.shape[0], self.num_classes)
|
189 |
+
return x
|
190 |
+
|
191 |
+
def initialize_weights(self):
|
192 |
+
for module in self.modules():
|
193 |
+
if isinstance(module, nn.Conv3d) or isinstance(module, nn.Linear):
|
194 |
+
if hasattr(module, "nonlinearity"):
|
195 |
+
if module.nonlinearity == 'relu':
|
196 |
+
init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
197 |
+
elif module.nonlinearity == 'hardswish':
|
198 |
+
init.xavier_uniform_(module.weight)
|
199 |
+
elif isinstance(module, nn.BatchNorm3d):
|
200 |
+
init.constant_(module.weight, 1)
|
201 |
+
init.constant_(module.bias, 0)
|
202 |
+
|
203 |
+
#mobilenet small 3d convolutions
|
204 |
+
class MobileNetSmall3D(nn.Module):
|
205 |
+
def __init__(self,num_classes=2):
|
206 |
+
super().__init__()
|
207 |
+
|
208 |
+
self.num_classes = num_classes
|
209 |
+
|
210 |
+
#conv3d (h-swish): 224x224x3 -> 112x112x16
|
211 |
+
self.block1 = nn.Sequential(
|
212 |
+
nn.Conv3d(in_channels=3,out_channels=16,kernel_size=3,stride=2,padding=1),
|
213 |
+
nn.BatchNorm3d(16),
|
214 |
+
nn.Hardswish()
|
215 |
+
)
|
216 |
+
|
217 |
+
#3x3 bottlenecks (3, ReLU, first gets squeeze-excite): 112x112x16 -> 28x28x24
|
218 |
+
self.block2 = nn.Sequential(
|
219 |
+
Bottleneck3D(in_channels=16,out_channels=16,expanded_channels=16,stride=2,use_se=True,nonlinearity=nn.LeakyReLU(),dropout=0.2),
|
220 |
+
Bottleneck3D(in_channels=16,out_channels=24,expanded_channels=72,stride=2,nonlinearity=nn.LeakyReLU(),dropout=0.2),
|
221 |
+
Bottleneck3D(in_channels=24,out_channels=24,expanded_channels=88,stride=1,nonlinearity=nn.LeakyReLU(),dropout=0.2)
|
222 |
+
)
|
223 |
+
#5x5 bottlenecks (8, h-swish, squeeze-excite): 28x28x24 -> 7x7x96
|
224 |
+
self.block3 = nn.Sequential(
|
225 |
+
Bottleneck3D(in_channels=24,out_channels=40,expanded_channels=96,stride=2,use_se=True,kernel_size=5,dropout=0.2),
|
226 |
+
Bottleneck3D(in_channels=40,out_channels=40,expanded_channels=240,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
227 |
+
Bottleneck3D(in_channels=40,out_channels=40,expanded_channels=240,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
228 |
+
Bottleneck3D(in_channels=40,out_channels=48,expanded_channels=120,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
229 |
+
Bottleneck3D(in_channels=48,out_channels=48,expanded_channels=144,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
230 |
+
Bottleneck3D(in_channels=48,out_channels=96,expanded_channels=288,stride=2,use_se=True,kernel_size=5,dropout=0.2),
|
231 |
+
Bottleneck3D(in_channels=96,out_channels=96,expanded_channels=576,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
232 |
+
Bottleneck3D(in_channels=96,out_channels=96,expanded_channels=576,stride=1,use_se=True,kernel_size=5,dropout=0.2)
|
233 |
+
)
|
234 |
+
#conv3d (h-swish), avg pool 7x7: 7x7x96 -> 1x1x576
|
235 |
+
self.block4 = nn.Sequential(
|
236 |
+
nn.Conv3d(in_channels=96,out_channels=576,kernel_size=1,stride=1,padding=0),
|
237 |
+
SEBlock3D(channels=576),
|
238 |
+
nn.BatchNorm3d(576),
|
239 |
+
nn.Hardswish()
|
240 |
+
)
|
241 |
+
#conv3d 1x1, NBN, (2, first uses h-swish): 1x1x576
|
242 |
+
self.classifier = nn.Sequential(
|
243 |
+
nn.AdaptiveAvgPool3d((1,1,1)),
|
244 |
+
nn.Conv3d(in_channels=576,out_channels=1024,kernel_size=1,stride=1,padding=0),
|
245 |
+
nn.Hardswish(),
|
246 |
+
nn.Conv3d(in_channels=1024,out_channels=self.num_classes,kernel_size=1,stride=1,padding=0),
|
247 |
+
)
|
248 |
+
|
249 |
+
def forward(self,x):
|
250 |
+
x = self.block1(x)
|
251 |
+
x = self.block2(x)
|
252 |
+
x = self.block3(x)
|
253 |
+
x = self.block4(x)
|
254 |
+
x = self.classifier(x)
|
255 |
+
x = x.view(x.shape[0], self.num_classes)
|
256 |
+
return x
|
257 |
+
|
258 |
+
|
259 |
+
def initialize_weights(self):
|
260 |
+
for module in self.modules():
|
261 |
+
if isinstance(module, nn.Conv3d) or isinstance(module, nn.Linear):
|
262 |
+
if hasattr(module, "nonlinearity"):
|
263 |
+
if module.nonlinearity == 'relu' or 'leaky_relu':
|
264 |
+
init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
265 |
+
elif module.nonlinearity == 'hardswish':
|
266 |
+
init.xavier_uniform_(module.weight)
|
267 |
+
elif isinstance(module, nn.BatchNorm3d):
|
268 |
+
init.constant_(module.weight, 1)
|
269 |
+
init.constant_(module.bias, 0)
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
#MobileNetV3-Large 2D + LSTM for helping with the temporal dimension
|
276 |
+
class MobileNetLarge2D(nn.Module):
|
277 |
+
def __init__(self, num_classes=2):
|
278 |
+
super().__init__()
|
279 |
+
|
280 |
+
self.num_classes = num_classes
|
281 |
+
|
282 |
+
def initialize_weights(self):
|
283 |
+
for module in self.modules():
|
284 |
+
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
|
285 |
+
if hasattr(module, "nonlinearity"):
|
286 |
+
if module.nonlinearity == 'relu':
|
287 |
+
init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
288 |
+
elif module.nonlinearity == 'hardswish':
|
289 |
+
init.xavier_uniform_(module.weight)
|
290 |
+
elif isinstance(module, nn.BatchNorm2d):
|
291 |
+
init.constant_(module.weight, 1)
|
292 |
+
init.constant_(module.bias, 0)
|
293 |
+
|
294 |
+
#conv2d (h-swish): 224x224x3 -> 112x112x16
|
295 |
+
self.block1 = nn.Sequential(
|
296 |
+
nn.Conv2d(in_channels=3,out_channels=16,stride=2,kernel_size=3,padding=1),
|
297 |
+
nn.BatchNorm2d(16),
|
298 |
+
nn.Hardswish()
|
299 |
+
)
|
300 |
+
#3x3 bottlenecks1 (3, ReLU): 112x112x16 -> 56x56x24
|
301 |
+
self.block2 = nn.Sequential(
|
302 |
+
Bottleneck2D(in_channels=16,out_channels=16,expanded_channels=16,stride=1,nonlinearity=nn.ReLU(),dropout=0.2),
|
303 |
+
Bottleneck2D(in_channels=16,out_channels=24,expanded_channels=64,stride=2,nonlinearity=nn.ReLU()),
|
304 |
+
Bottleneck2D(in_channels=24,out_channels=24,expanded_channels=72,stride=1,nonlinearity=nn.ReLU(),dropout=0.2)
|
305 |
+
)
|
306 |
+
#5x5 bottlenecks1 (3, ReLU, squeeze-excite): 56x56x24 -> 28x28x40
|
307 |
+
self.block3 = nn.Sequential(
|
308 |
+
Bottleneck2D(in_channels=24,out_channels=40,expanded_channels=72,stride=2,use_se=True,kernel_size=5,nonlinearity=nn.ReLU(),dropout=0.2),
|
309 |
+
Bottleneck2D(in_channels=40,out_channels=40,expanded_channels=120,stride=1,use_se=True,kernel_size=5,nonlinearity=nn.ReLU()),
|
310 |
+
Bottleneck2D(in_channels=40,out_channels=40,expanded_channels=120,stride=1,use_se=True,kernel_size=5,nonlinearity=nn.ReLU(),dropout=0.2)
|
311 |
+
)
|
312 |
+
#3x3 bottlenecks2 (6, h-swish, last two get squeeze-excite): 28x28x40 -> 14x14x112
|
313 |
+
self.block4 = nn.Sequential(
|
314 |
+
Bottleneck2D(in_channels=40,out_channels=80,expanded_channels=240,stride=2,dropout=0.2),
|
315 |
+
Bottleneck2D(in_channels=80,out_channels=80,expanded_channels=240,stride=1),
|
316 |
+
Bottleneck2D(in_channels=80,out_channels=80,expanded_channels=184,stride=1,dropout=0.2),
|
317 |
+
Bottleneck2D(in_channels=80,out_channels=80,expanded_channels=184,stride=1),
|
318 |
+
Bottleneck2D(in_channels=80,out_channels=112,expanded_channels=480,stride=1,use_se=True,dropout=0.2),
|
319 |
+
Bottleneck2D(in_channels=112,out_channels=112,expanded_channels=672,stride=1,use_se=True,dropout=0.2)
|
320 |
+
)
|
321 |
+
#5x5 bottlenecks2 (3, h-swish, squeeze-excite): 14x14x112 -> 7x7x160
|
322 |
+
self.block5 = nn.Sequential(
|
323 |
+
Bottleneck2D(in_channels=112,out_channels=160,expanded_channels=672,stride=2,use_se=True,kernel_size=5),
|
324 |
+
Bottleneck2D(in_channels=160,out_channels=160,expanded_channels=960,stride=1,use_se=True,kernel_size=5),
|
325 |
+
Bottleneck2D(in_channels=160,out_channels=160,expanded_channels=960,stride=1,use_se=True,kernel_size=5)
|
326 |
+
)
|
327 |
+
#conv3d (h-swish), avg pool 7x7: 7x7x960 -> 1x1x960
|
328 |
+
self.block6 = nn.Sequential(
|
329 |
+
nn.Conv2d(in_channels=160,out_channels=960,stride=1,kernel_size=1),
|
330 |
+
nn.BatchNorm2d(960),
|
331 |
+
nn.Hardswish(),
|
332 |
+
nn.AvgPool2d(kernel_size=7,stride=1)
|
333 |
+
)
|
334 |
+
#LSTM: 1x1x960 ->
|
335 |
+
self.lstm = nn.LSTM(input_size=960,hidden_size=32,num_layers=5,batch_first=True)
|
336 |
+
#classifier: conv3d 1x1 NBN (2, first uses h-swish): 1x1x960
|
337 |
+
self.classifier = nn.Sequential(
|
338 |
+
nn.Linear(32,self.num_classes) #2 classes for ball/strike
|
339 |
+
)
|
340 |
+
|
341 |
+
def forward(self,x):
|
342 |
+
#x is shape (batch_size, timesteps, C, H, W)
|
343 |
+
batch_size,timesteps,C,H,W = x.size()
|
344 |
+
cnn_out = torch.zeros(batch_size,timesteps,960).to(x.device) #assuming the output of block6 is 960
|
345 |
+
#we're looping through the frames in the video
|
346 |
+
for i in range(timesteps):
|
347 |
+
# Select the frame at the ith position
|
348 |
+
frame = x[:, i, :, :, :]
|
349 |
+
frame = self.block1(frame)
|
350 |
+
frame = self.block2(frame)
|
351 |
+
frame = self.block3(frame)
|
352 |
+
frame = self.block4(frame)
|
353 |
+
frame = self.block5(frame)
|
354 |
+
frame = self.block6(frame)
|
355 |
+
# Flatten the frame (minus the batch dimension)
|
356 |
+
frame = frame.view(frame.size(0), -1)
|
357 |
+
cnn_out[:, i, :] = frame
|
358 |
+
# reshape for LSTM
|
359 |
+
x = cnn_out
|
360 |
+
x, _ = self.lstm(x)
|
361 |
+
# get the output from the last timestep only
|
362 |
+
x = x[:, -1, :]
|
363 |
+
x = self.classifier(x)
|
364 |
+
return x
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
#MobileNetV3-Small 2d with lstm for helping with the temporal dimension
|
369 |
+
class MobileNetSmall2D(nn.Module):
|
370 |
+
def __init__(self,num_classes=2):
|
371 |
+
super().__init__()
|
372 |
+
|
373 |
+
self.num_classes = num_classes
|
374 |
+
|
375 |
+
|
376 |
+
#conv3d (h-swish): 224x224x3 -> 112x112x16
|
377 |
+
self.block1 = nn.Sequential(
|
378 |
+
nn.Conv2d(in_channels=3,out_channels=16,kernel_size=3,stride=2,padding=1),
|
379 |
+
nn.BatchNorm2d(16),
|
380 |
+
nn.Hardswish()
|
381 |
+
)
|
382 |
+
#3x3 bottlenecks (3, ReLU, first gets squeeze-excite): 112x112x16 -> 28x28x24
|
383 |
+
self.block2 = nn.Sequential(
|
384 |
+
Bottleneck2D(in_channels=16,out_channels=16,expanded_channels=16,stride=2,use_se=True,nonlinearity=nn.ReLU(),dropout=0.2),
|
385 |
+
Bottleneck2D(in_channels=16,out_channels=24,expanded_channels=72,stride=2,nonlinearity=nn.ReLU(),dropout=0.2),
|
386 |
+
Bottleneck2D(in_channels=24,out_channels=24,expanded_channels=88,stride=1,nonlinearity=nn.ReLU(),dropout=0.2)
|
387 |
+
)
|
388 |
+
#5x5 bottlenecks (8, h-swish, squeeze-excite): 28x28x24 -> 7x7x96
|
389 |
+
self.block3 = nn.Sequential(
|
390 |
+
Bottleneck2D(in_channels=24,out_channels=40,expanded_channels=96,stride=2,use_se=True,kernel_size=5,dropout=0.2),
|
391 |
+
Bottleneck2D(in_channels=40,out_channels=40,expanded_channels=240,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
392 |
+
Bottleneck2D(in_channels=40,out_channels=40,expanded_channels=240,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
393 |
+
Bottleneck2D(in_channels=40,out_channels=48,expanded_channels=120,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
394 |
+
Bottleneck2D(in_channels=48,out_channels=48,expanded_channels=144,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
395 |
+
Bottleneck2D(in_channels=48,out_channels=96,expanded_channels=288,stride=2,use_se=True,kernel_size=5,dropout=0.2),
|
396 |
+
Bottleneck2D(in_channels=96,out_channels=96,expanded_channels=576,stride=1,use_se=True,kernel_size=5,dropout=0.2),
|
397 |
+
Bottleneck2D(in_channels=96,out_channels=96,expanded_channels=576,stride=1,use_se=True,kernel_size=5,dropout=0.2)
|
398 |
+
)
|
399 |
+
#conv2d (h-swish), avg pool 7x7: 7x7x96 -> 1x1x576
|
400 |
+
self.block4 = nn.Sequential(
|
401 |
+
nn.Conv2d(in_channels=96,out_channels=576,kernel_size=1,stride=1,padding=0),
|
402 |
+
SEBlock2D(channels=576),
|
403 |
+
nn.BatchNorm2d(576),
|
404 |
+
nn.Hardswish(),
|
405 |
+
nn.AvgPool2d(kernel_size=7,stride=1)
|
406 |
+
)
|
407 |
+
#LSTM: 1x1x576 ->
|
408 |
+
self.lstm = nn.LSTM(input_size=576,hidden_size=64,num_layers=1,batch_first=True)
|
409 |
+
#classifier: conv3d 1x1 NBN (2, first uses h-swish): 1x1x576
|
410 |
+
self.classifier = nn.Sequential(
|
411 |
+
nn.Linear(64,self.num_classes) #2 classes for ball/strike
|
412 |
+
)
|
413 |
+
|
414 |
+
def forward(self,x):
|
415 |
+
# x is of shape (batch_size, timesteps, C, H, W)
|
416 |
+
batch_size, timesteps, C, H, W = x.size()
|
417 |
+
cnn_out = torch.zeros(batch_size, timesteps, 576).to(x.device) #assuming the output of block4 is 576
|
418 |
+
#we're looping through the frames in the video
|
419 |
+
for i in range(timesteps):
|
420 |
+
# Select the frame at the ith position
|
421 |
+
frame = x[:, i, :, :, :]
|
422 |
+
frame = self.block1(frame)
|
423 |
+
frame = self.block2(frame)
|
424 |
+
frame = self.block3(frame)
|
425 |
+
frame = self.block4(frame)
|
426 |
+
# Flatten the frame (minus the batch dimension)
|
427 |
+
frame = frame.view(frame.size(0), -1)
|
428 |
+
cnn_out[:, i, :] = frame
|
429 |
+
# reshape for LSTM
|
430 |
+
x = cnn_out
|
431 |
+
x, _ = self.lstm(x)
|
432 |
+
# get the output from the last timestep only
|
433 |
+
x = x[:, -1, :]
|
434 |
+
x = self.classifier(x)
|
435 |
+
return x
|
436 |
+
|
437 |
+
def initialize_weights(self):
|
438 |
+
for module in self.modules():
|
439 |
+
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
|
440 |
+
if hasattr(module, "nonlinearity"):
|
441 |
+
if module.nonlinearity == 'relu':
|
442 |
+
init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
443 |
+
elif module.nonlinearity == 'hardswish':
|
444 |
+
init.xavier_uniform_(module.weight)
|
445 |
+
elif isinstance(module, nn.BatchNorm2d):
|
446 |
+
init.constant_(module.weight, 1)
|
447 |
+
init.constant_(module.bias, 0)
|
picklebot_2m.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8361eaa6e117e4f26b76daf5dcc98003c2bbb59ecec5bac0ff7743143fb8e16a
|
3 |
+
size 240726237
|
weights/MobileNetLarge.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a851fd44dd5a96af4bb6a6525f69f727487a6c8908314f1d755a6c34a452bcaa
|
3 |
+
size 8454104
|