Shaltiel commited on
Commit
f0f916f
·
1 Parent(s): a34ee6f

added handle for empty + limited precision

Browse files
Files changed (2) hide show
  1. src/display/utils.py +12 -12
  2. src/populate.py +3 -2
src/display/utils.py CHANGED
@@ -94,10 +94,10 @@ class WeightType(Enum):
94
  class Precision(Enum):
95
  float16 = ModelDetails("float16")
96
  bfloat16 = ModelDetails("bfloat16")
97
- float32 = ModelDetails("float32")
98
- #qt_8bit = ModelDetails("8bit")
99
- #qt_4bit = ModelDetails("4bit")
100
- #qt_GPTQ = ModelDetails("GPTQ")
101
  Unknown = ModelDetails("?")
102
 
103
  def from_str(precision):
@@ -105,14 +105,14 @@ class Precision(Enum):
105
  return Precision.float16
106
  if precision in ["torch.bfloat16", "bfloat16"]:
107
  return Precision.bfloat16
108
- if precision in ["float32"]:
109
- return Precision.float32
110
- #if precision in ["8bit"]:
111
- # return Precision.qt_8bit
112
- #if precision in ["4bit"]:
113
- # return Precision.qt_4bit
114
- #if precision in ["GPTQ", "None"]:
115
- # return Precision.qt_GPTQ
116
  return Precision.Unknown
117
 
118
  # Column selection
 
94
  class Precision(Enum):
95
  float16 = ModelDetails("float16")
96
  bfloat16 = ModelDetails("bfloat16")
97
+ # float32 = ModelDetails("float32")
98
+ qt_8bit = ModelDetails("8bit")
99
+ qt_4bit = ModelDetails("4bit")
100
+ qt_GPTQ = ModelDetails("GPTQ")
101
  Unknown = ModelDetails("?")
102
 
103
  def from_str(precision):
 
105
  return Precision.float16
106
  if precision in ["torch.bfloat16", "bfloat16"]:
107
  return Precision.bfloat16
108
+ # if precision in ["float32"]:
109
+ # return Precision.float32
110
+ if precision in ["8bit"]:
111
+ return Precision.qt_8bit
112
+ if precision in ["4bit"]:
113
+ return Precision.qt_4bit
114
+ if precision in ["GPTQ", "None"]:
115
+ return Precision.qt_GPTQ
116
  return Precision.Unknown
117
 
118
  # Column selection
src/populate.py CHANGED
@@ -13,8 +13,9 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
13
  all_data_json = [v.to_dict() for v in raw_data]
14
 
15
  df = pd.DataFrame.from_records(all_data_json)
16
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
17
- df = df[cols].round(decimals=2)
 
18
 
19
  # filter out if any of the benchmarks have not been produced
20
  df = df[has_no_nan_values(df, benchmark_cols)]
 
13
  all_data_json = [v.to_dict() for v in raw_data]
14
 
15
  df = pd.DataFrame.from_records(all_data_json)
16
+ if df.shape[0] > 0:
17
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
+ df = df[cols].round(decimals=2)
19
 
20
  # filter out if any of the benchmarks have not been produced
21
  df = df[has_no_nan_values(df, benchmark_cols)]