import gradio as gr import pytesseract from PIL import Image import requests import re import traceback import os # 配置 Tesseract OCR 的路径(Hugging Face Spaces 自动配置) pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # 使用环境变量获取 Hugging Face API Token API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Math-72B-Instruct" API_TOKEN = os.getenv("HF_API_TOKEN") # 从环境变量获取 Token HEADERS = {"Authorization": f"Bearer {API_TOKEN}"} # OCR 识别函数 def ocr_with_tesseract(image_path): try: image = Image.open(image_path).convert("L") config = "--psm 6" text = pytesseract.image_to_string(image, config=config) text = re.sub(r'[^0-9a-zA-Z=+\-*/()., ]', '', text) return text if text else "OCR 识别失败" except Exception as e: return f"OCR 识别错误: {e}\n{traceback.format_exc()}" # AI 解答生成函数 def generate_solution_with_qwen(question): prompt = f"请详细解答以下数学题目:{question}" payload = {"inputs": prompt} response = requests.post(API_URL, headers=HEADERS, json=payload) if response.status_code == 200: result = response.json() return result.get('generated_text', "解答生成失败") else: return f"API 调用失败,状态码: {response.status_code}, 响应: {response.text}" # 主处理函数 def process(image_path): ocr_result = ocr_with_tesseract(image_path) ai_solution = generate_solution_with_qwen(ocr_result) return ocr_result, ai_solution # 构建 Gradio 应用界面 def build_interface(): with gr.Blocks() as interface: gr.Markdown("# 📚 高级 AI 数学解题助手") image_input = gr.Image(type="filepath", label="上传数学题目图片") ocr_output = gr.Textbox(label="OCR 识别结果") ai_output = gr.Markdown(label="AI 解答") submit_button = gr.Button("识别并解答") submit_button.click(fn=process, inputs=image_input, outputs=[ocr_output, ai_output]) return interface # 启动 Gradio 应用 interface = build_interface() interface.launch()