File size: 929 Bytes
ac9a553 5ee8ae8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
model_id = 'heisenberg3376/whisper-tiny-minds14'
pipe = pipeline("automatic-speech-recognition", model=model_id)
def transcribe_speech(filepath):
output = pipe(
filepath,
max_new_tokens=256,
generate_kwargs={
"task": "transcribe",
}, # update with the language you've fine-tuned on
chunk_length_s=30,
batch_size=8,
)
return output["text"]
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=transcribe_speech,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
)
file_transcribe = gr.Interface(
fn=transcribe_speech,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.Textbox(),
)
with demo:
gr.TabbedInterface(
[mic_transcribe, file_transcribe],
["Transcribe Microphone", "Transcribe Audio File"],
)
demo.launch(debug=True, share=True) |