File size: 7,383 Bytes
7362609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from itertools import product
import math
import random
import pytest
import torch
from torch import nn
from audiocraft.modules import (
NormConv1d,
NormConvTranspose1d,
StreamableConv1d,
StreamableConvTranspose1d,
pad1d,
unpad1d,
)
def test_get_extra_padding_for_conv1d():
# TODO: Implement me!
pass
def test_pad1d_zeros():
x = torch.randn(1, 1, 20)
xp1 = pad1d(x, (0, 5), mode='constant', value=0.)
assert xp1.shape[-1] == 25
xp2 = pad1d(x, (5, 5), mode='constant', value=0.)
assert xp2.shape[-1] == 30
xp3 = pad1d(x, (0, 0), mode='constant', value=0.)
assert xp3.shape[-1] == 20
xp4 = pad1d(x, (10, 30), mode='constant', value=0.)
assert xp4.shape[-1] == 60
with pytest.raises(AssertionError):
pad1d(x, (-1, 0), mode='constant', value=0.)
with pytest.raises(AssertionError):
pad1d(x, (0, -1), mode='constant', value=0.)
with pytest.raises(AssertionError):
pad1d(x, (-1, -1), mode='constant', value=0.)
def test_pad1d_reflect():
x = torch.randn(1, 1, 20)
xp1 = pad1d(x, (0, 5), mode='reflect', value=0.)
assert xp1.shape[-1] == 25
xp2 = pad1d(x, (5, 5), mode='reflect', value=0.)
assert xp2.shape[-1] == 30
xp3 = pad1d(x, (0, 0), mode='reflect', value=0.)
assert xp3.shape[-1] == 20
xp4 = pad1d(x, (10, 30), mode='reflect', value=0.)
assert xp4.shape[-1] == 60
with pytest.raises(AssertionError):
pad1d(x, (-1, 0), mode='reflect', value=0.)
with pytest.raises(AssertionError):
pad1d(x, (0, -1), mode='reflect', value=0.)
with pytest.raises(AssertionError):
pad1d(x, (-1, -1), mode='reflect', value=0.)
def test_unpad1d():
x = torch.randn(1, 1, 20)
u1 = unpad1d(x, (5, 5))
assert u1.shape[-1] == 10
u2 = unpad1d(x, (0, 5))
assert u2.shape[-1] == 15
u3 = unpad1d(x, (5, 0))
assert u3.shape[-1] == 15
u4 = unpad1d(x, (0, 0))
assert u4.shape[-1] == x.shape[-1]
with pytest.raises(AssertionError):
unpad1d(x, (-1, 0))
with pytest.raises(AssertionError):
unpad1d(x, (0, -1))
with pytest.raises(AssertionError):
unpad1d(x, (-1, -1))
class TestNormConv1d:
def test_norm_conv1d_modules(self):
N, C, T = 2, 2, random.randrange(1, 100_000)
t0 = torch.randn(N, C, T)
C_out, kernel_size, stride = 1, 4, 1
expected_out_length = int((T - kernel_size) / stride + 1)
wn_conv = NormConv1d(C, 1, kernel_size=4, norm='weight_norm')
gn_conv = NormConv1d(C, 1, kernel_size=4, norm='time_group_norm')
nn_conv = NormConv1d(C, 1, kernel_size=4, norm='none')
assert isinstance(wn_conv.norm, nn.Identity)
assert isinstance(wn_conv.conv, nn.Conv1d)
assert isinstance(gn_conv.norm, nn.GroupNorm)
assert isinstance(gn_conv.conv, nn.Conv1d)
assert isinstance(nn_conv.norm, nn.Identity)
assert isinstance(nn_conv.conv, nn.Conv1d)
for conv_layer in [wn_conv, gn_conv, nn_conv]:
out = conv_layer(t0)
assert isinstance(out, torch.Tensor)
assert list(out.shape) == [N, C_out, expected_out_length]
class TestNormConvTranspose1d:
def test_normalizations(self):
N, C, T = 2, 2, random.randrange(1, 100_000)
t0 = torch.randn(N, C, T)
C_out, kernel_size, stride = 1, 4, 1
expected_out_length = (T - 1) * stride + (kernel_size - 1) + 1
wn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='weight_norm')
gn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='time_group_norm')
nn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='none')
assert isinstance(wn_convtr.norm, nn.Identity)
assert isinstance(wn_convtr.convtr, nn.ConvTranspose1d)
assert isinstance(gn_convtr.norm, nn.GroupNorm)
assert isinstance(gn_convtr.convtr, nn.ConvTranspose1d)
assert isinstance(nn_convtr.norm, nn.Identity)
assert isinstance(nn_convtr.convtr, nn.ConvTranspose1d)
for convtr_layer in [wn_convtr, gn_convtr, nn_convtr]:
out = convtr_layer(t0)
assert isinstance(out, torch.Tensor)
assert list(out.shape) == [N, C_out, expected_out_length]
class TestStreamableConv1d:
def get_streamable_conv1d_output_length(self, length, kernel_size, stride, dilation):
# StreamableConv1d internally pads to make sure that the last window is full
padding_total = (kernel_size - 1) * dilation - (stride - 1)
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length // stride
def test_streamable_conv1d(self):
N, C, T = 2, 2, random.randrange(1, 100_000)
t0 = torch.randn(N, C, T)
C_out = 1
# conv params are [(kernel_size, stride, dilation)]
conv_params = [(4, 1, 1), (4, 2, 1), (3, 1, 3), (10, 5, 1), (3, 2, 3)]
for causal, (kernel_size, stride, dilation) in product([False, True], conv_params):
expected_out_length = self.get_streamable_conv1d_output_length(T, kernel_size, stride, dilation)
sconv = StreamableConv1d(C, C_out, kernel_size=kernel_size, stride=stride, dilation=dilation, causal=causal)
out = sconv(t0)
assert isinstance(out, torch.Tensor)
print(list(out.shape), [N, C_out, expected_out_length])
assert list(out.shape) == [N, C_out, expected_out_length]
class TestStreamableConvTranspose1d:
def get_streamable_convtr1d_output_length(self, length, kernel_size, stride):
padding_total = (kernel_size - stride)
return (length - 1) * stride - padding_total + (kernel_size - 1) + 1
def test_streamable_convtr1d(self):
N, C, T = 2, 2, random.randrange(1, 100_000)
t0 = torch.randn(N, C, T)
C_out = 1
with pytest.raises(AssertionError):
StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=False, trim_right_ratio=0.5)
StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=True, trim_right_ratio=-1.)
StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=True, trim_right_ratio=2)
# causal params are [(causal, trim_right)]
causal_params = [(False, 1.0), (True, 1.0), (True, 0.5), (True, 0.0)]
# conv params are [(kernel_size, stride)]
conv_params = [(4, 1), (4, 2), (3, 1), (10, 5)]
for ((causal, trim_right_ratio), (kernel_size, stride)) in product(causal_params, conv_params):
expected_out_length = self.get_streamable_convtr1d_output_length(T, kernel_size, stride)
sconvtr = StreamableConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride,
causal=causal, trim_right_ratio=trim_right_ratio)
out = sconvtr(t0)
assert isinstance(out, torch.Tensor)
assert list(out.shape) == [N, C_out, expected_out_length]
|