File size: 7,383 Bytes
7362609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from itertools import product
import math
import random

import pytest
import torch
from torch import nn

from audiocraft.modules import (
    NormConv1d,
    NormConvTranspose1d,
    StreamableConv1d,
    StreamableConvTranspose1d,
    pad1d,
    unpad1d,
)


def test_get_extra_padding_for_conv1d():
    # TODO: Implement me!
    pass


def test_pad1d_zeros():
    x = torch.randn(1, 1, 20)

    xp1 = pad1d(x, (0, 5), mode='constant', value=0.)
    assert xp1.shape[-1] == 25
    xp2 = pad1d(x, (5, 5), mode='constant', value=0.)
    assert xp2.shape[-1] == 30
    xp3 = pad1d(x, (0, 0), mode='constant', value=0.)
    assert xp3.shape[-1] == 20
    xp4 = pad1d(x, (10, 30), mode='constant', value=0.)
    assert xp4.shape[-1] == 60

    with pytest.raises(AssertionError):
        pad1d(x, (-1, 0), mode='constant', value=0.)

    with pytest.raises(AssertionError):
        pad1d(x, (0, -1), mode='constant', value=0.)

    with pytest.raises(AssertionError):
        pad1d(x, (-1, -1), mode='constant', value=0.)


def test_pad1d_reflect():
    x = torch.randn(1, 1, 20)

    xp1 = pad1d(x, (0, 5), mode='reflect', value=0.)
    assert xp1.shape[-1] == 25
    xp2 = pad1d(x, (5, 5), mode='reflect', value=0.)
    assert xp2.shape[-1] == 30
    xp3 = pad1d(x, (0, 0), mode='reflect', value=0.)
    assert xp3.shape[-1] == 20
    xp4 = pad1d(x, (10, 30), mode='reflect', value=0.)
    assert xp4.shape[-1] == 60

    with pytest.raises(AssertionError):
        pad1d(x, (-1, 0), mode='reflect', value=0.)

    with pytest.raises(AssertionError):
        pad1d(x, (0, -1), mode='reflect', value=0.)

    with pytest.raises(AssertionError):
        pad1d(x, (-1, -1), mode='reflect', value=0.)


def test_unpad1d():
    x = torch.randn(1, 1, 20)

    u1 = unpad1d(x, (5, 5))
    assert u1.shape[-1] == 10
    u2 = unpad1d(x, (0, 5))
    assert u2.shape[-1] == 15
    u3 = unpad1d(x, (5, 0))
    assert u3.shape[-1] == 15
    u4 = unpad1d(x, (0, 0))
    assert u4.shape[-1] == x.shape[-1]

    with pytest.raises(AssertionError):
        unpad1d(x, (-1, 0))

    with pytest.raises(AssertionError):
        unpad1d(x, (0, -1))

    with pytest.raises(AssertionError):
        unpad1d(x, (-1, -1))


class TestNormConv1d:

    def test_norm_conv1d_modules(self):
        N, C, T = 2, 2, random.randrange(1, 100_000)
        t0 = torch.randn(N, C, T)

        C_out, kernel_size, stride = 1, 4, 1
        expected_out_length = int((T - kernel_size) / stride + 1)
        wn_conv = NormConv1d(C, 1, kernel_size=4, norm='weight_norm')
        gn_conv = NormConv1d(C, 1, kernel_size=4, norm='time_group_norm')
        nn_conv = NormConv1d(C, 1, kernel_size=4, norm='none')

        assert isinstance(wn_conv.norm, nn.Identity)
        assert isinstance(wn_conv.conv, nn.Conv1d)

        assert isinstance(gn_conv.norm, nn.GroupNorm)
        assert isinstance(gn_conv.conv, nn.Conv1d)

        assert isinstance(nn_conv.norm, nn.Identity)
        assert isinstance(nn_conv.conv, nn.Conv1d)

        for conv_layer in [wn_conv, gn_conv, nn_conv]:
            out = conv_layer(t0)
            assert isinstance(out, torch.Tensor)
            assert list(out.shape) == [N, C_out, expected_out_length]


class TestNormConvTranspose1d:

    def test_normalizations(self):
        N, C, T = 2, 2, random.randrange(1, 100_000)
        t0 = torch.randn(N, C, T)

        C_out, kernel_size, stride = 1, 4, 1
        expected_out_length = (T - 1) * stride + (kernel_size - 1) + 1

        wn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='weight_norm')
        gn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='time_group_norm')
        nn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='none')

        assert isinstance(wn_convtr.norm, nn.Identity)
        assert isinstance(wn_convtr.convtr, nn.ConvTranspose1d)

        assert isinstance(gn_convtr.norm, nn.GroupNorm)
        assert isinstance(gn_convtr.convtr, nn.ConvTranspose1d)

        assert isinstance(nn_convtr.norm, nn.Identity)
        assert isinstance(nn_convtr.convtr, nn.ConvTranspose1d)

        for convtr_layer in [wn_convtr, gn_convtr, nn_convtr]:
            out = convtr_layer(t0)
            assert isinstance(out, torch.Tensor)
            assert list(out.shape) == [N, C_out, expected_out_length]


class TestStreamableConv1d:

    def get_streamable_conv1d_output_length(self, length, kernel_size, stride, dilation):
        # StreamableConv1d internally pads to make sure that the last window is full
        padding_total = (kernel_size - 1) * dilation - (stride - 1)
        n_frames = (length - kernel_size + padding_total) / stride + 1
        ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
        return ideal_length // stride

    def test_streamable_conv1d(self):
        N, C, T = 2, 2, random.randrange(1, 100_000)
        t0 = torch.randn(N, C, T)
        C_out = 1

        # conv params are [(kernel_size, stride, dilation)]
        conv_params = [(4, 1, 1), (4, 2, 1), (3, 1, 3), (10, 5, 1), (3, 2, 3)]
        for causal, (kernel_size, stride, dilation) in product([False, True], conv_params):
            expected_out_length = self.get_streamable_conv1d_output_length(T, kernel_size, stride, dilation)
            sconv = StreamableConv1d(C, C_out, kernel_size=kernel_size, stride=stride, dilation=dilation, causal=causal)
            out = sconv(t0)
            assert isinstance(out, torch.Tensor)
            print(list(out.shape), [N, C_out, expected_out_length])
            assert list(out.shape) == [N, C_out, expected_out_length]


class TestStreamableConvTranspose1d:

    def get_streamable_convtr1d_output_length(self, length, kernel_size, stride):
        padding_total = (kernel_size - stride)
        return (length - 1) * stride - padding_total + (kernel_size - 1) + 1

    def test_streamable_convtr1d(self):
        N, C, T = 2, 2, random.randrange(1, 100_000)
        t0 = torch.randn(N, C, T)

        C_out = 1

        with pytest.raises(AssertionError):
            StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=False, trim_right_ratio=0.5)
            StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=True, trim_right_ratio=-1.)
            StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=True, trim_right_ratio=2)

        # causal params are [(causal, trim_right)]
        causal_params = [(False, 1.0), (True, 1.0), (True, 0.5), (True, 0.0)]
        # conv params are [(kernel_size, stride)]
        conv_params = [(4, 1), (4, 2), (3, 1), (10, 5)]
        for ((causal, trim_right_ratio), (kernel_size, stride)) in product(causal_params, conv_params):
            expected_out_length = self.get_streamable_convtr1d_output_length(T, kernel_size, stride)
            sconvtr = StreamableConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride,
                                                causal=causal, trim_right_ratio=trim_right_ratio)
            out = sconvtr(t0)
            assert isinstance(out, torch.Tensor)
            assert list(out.shape) == [N, C_out, expected_out_length]