Spaces:
Sleeping
Sleeping
helloWorld199
commited on
Upload 2 files
Browse files- src/main.py +1 -1
- src/mdx.py +8 -3
src/main.py
CHANGED
@@ -181,7 +181,7 @@ def preprocess_song(song_input, mdx_model_params, song_id, is_webui, input_type,
|
|
181 |
orig_song_path = convert_to_stereo(orig_song_path)
|
182 |
|
183 |
display_progress('[~] Separating Vocals from Instrumental...', 0.1, is_webui, progress)
|
184 |
-
vocals_path, instrumentals_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'UVR-MDX-NET-Voc_FT.onnx'), orig_song_path, denoise=True, keep_orig=keep_orig, _stemname1 = "_origvocals", _stemname2
|
185 |
|
186 |
display_progress('[~] Separating Main Vocals from Backup Vocals...', 0.2, is_webui, progress)
|
187 |
backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'UVR_MDXNET_KARA_2.onnx'), vocals_path, suffix='Backup', invert_suffix='Main', denoise=True)
|
|
|
181 |
orig_song_path = convert_to_stereo(orig_song_path)
|
182 |
|
183 |
display_progress('[~] Separating Vocals from Instrumental...', 0.1, is_webui, progress)
|
184 |
+
vocals_path, instrumentals_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'UVR-MDX-NET-Voc_FT.onnx'), orig_song_path, denoise=True, keep_orig=keep_orig, _stemname1 = "_origvocals", _stemname2="_originstr")
|
185 |
|
186 |
display_progress('[~] Separating Main Vocals from Backup Vocals...', 0.2, is_webui, progress)
|
187 |
backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params, song_output_dir, os.path.join(mdxnet_models_dir, 'UVR_MDXNET_KARA_2.onnx'), vocals_path, suffix='Backup', invert_suffix='Main', denoise=True)
|
src/mdx.py
CHANGED
@@ -65,9 +65,11 @@ class MDX:
|
|
65 |
def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR):
|
66 |
|
67 |
# Set the device and the provider (CPU or CUDA)
|
68 |
-
self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
|
69 |
-
self.
|
70 |
-
|
|
|
|
|
71 |
self.model = params
|
72 |
|
73 |
# Load the ONNX model using ONNX Runtime
|
@@ -166,6 +168,8 @@ class MDX:
|
|
166 |
waves = np.array(wave_p[:, i:i + self.model.chunk_size])
|
167 |
mix_waves.append(waves)
|
168 |
|
|
|
|
|
169 |
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
|
170 |
|
171 |
return mix_waves, pad, trim
|
@@ -285,3 +289,4 @@ def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False,
|
|
285 |
del mdx_sess, wave_processed, wave
|
286 |
gc.collect()
|
287 |
return main_filepath, invert_filepath
|
|
|
|
65 |
def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR):
|
66 |
|
67 |
# Set the device and the provider (CPU or CUDA)
|
68 |
+
#self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
|
69 |
+
self.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
70 |
+
#self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider']
|
71 |
+
self.provider = ['CPUExecutionProvider']
|
72 |
+
|
73 |
self.model = params
|
74 |
|
75 |
# Load the ONNX model using ONNX Runtime
|
|
|
168 |
waves = np.array(wave_p[:, i:i + self.model.chunk_size])
|
169 |
mix_waves.append(waves)
|
170 |
|
171 |
+
print(self.device)
|
172 |
+
|
173 |
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
|
174 |
|
175 |
return mix_waves, pad, trim
|
|
|
289 |
del mdx_sess, wave_processed, wave
|
290 |
gc.collect()
|
291 |
return main_filepath, invert_filepath
|
292 |
+
|