henry2024 commited on
Commit
5f9af9c
·
verified ·
1 Parent(s): d32a246

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -70,19 +70,18 @@ train_data, test_data= train_test_split(df, test_size=0.15, random_state=42 )
70
  howto= """Welcome to the <b>Medical Chatbot</b>, powered by Gradio.
71
  Currently, the chatbot can WELCOME YOU, PREDICT DISEASE based on your symptoms and SUGGEST POSSIBLE SOLUTIONS AND RECOMENDATIONS, and BID YOU FAREWELL.
72
  <b>How to Start:</b> Simply type your messages in the textbox to chat with the Chatbot and press enter!<br><br>
73
- The bot will respond based on the best possible answers to your messages.
74
 
75
- """
76
  # Create the gradio demo
77
  with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo:
78
- gr.HTML('<h1 align="center">Medical Chatbot: ARIN 7102')
79
- #gr.HTML('<h3 align="center">To know more about this project')
80
- with gr.Accordion("Follow these Steps to use the Gradio WebUI", open=True):
81
- gr.HTML(howto)
82
- chatbot = gr.Chatbot()
83
- msg = gr.Textbox()
84
- clear = gr.ClearButton([msg, chatbot])
85
- '''
86
  def respond(message, chat_history):
87
  # Create couple of if-else statements to capture/mimick peoples's Interaction
88
  embedder = SentenceTransformer(args.embedder, device=device)
@@ -92,8 +91,8 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
92
  chat_history.append((message, bot_message))
93
  time.sleep(2)
94
  return "", chat_history
95
- '''
96
- def respond(message, chat_history, base_model = "microsoft/phi-2", device=device): # "meta-llama/Meta-Llama-3-70B"
97
  # define the model and tokenizer.
98
  # model = PhiForCausalLM.from_pretrained(base_model)
99
  model = AutoModelForCausalLM.from_pretrained(base_model)
@@ -121,8 +120,9 @@ def respond(message, chat_history, base_model = "microsoft/phi-2", device=device
121
  time.sleep(2)
122
  return "", chat_history
123
  #return bot_message
124
-
125
- msg.submit(respond, [msg, chatbot], [msg, chatbot])
 
126
 
127
  # Launch the demo
128
  demo.launch()
 
70
  howto= """Welcome to the <b>Medical Chatbot</b>, powered by Gradio.
71
  Currently, the chatbot can WELCOME YOU, PREDICT DISEASE based on your symptoms and SUGGEST POSSIBLE SOLUTIONS AND RECOMENDATIONS, and BID YOU FAREWELL.
72
  <b>How to Start:</b> Simply type your messages in the textbox to chat with the Chatbot and press enter!<br><br>
73
+ The bot will respond based on the best possible answers to your messages."""
74
 
 
75
  # Create the gradio demo
76
  with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo:
77
+ gr.HTML('<h1 align="center">Medical Chatbot: ARIN 7102')
78
+ #gr.HTML('<h3 align="center">To know more about this project')
79
+ with gr.Accordion("Follow these Steps to use the Gradio WebUI", open=True):
80
+ gr.HTML(howto)
81
+ chatbot = gr.Chatbot()
82
+ msg = gr.Textbox()
83
+ clear = gr.ClearButton([msg, chatbot])
84
+ '''
85
  def respond(message, chat_history):
86
  # Create couple of if-else statements to capture/mimick peoples's Interaction
87
  embedder = SentenceTransformer(args.embedder, device=device)
 
91
  chat_history.append((message, bot_message))
92
  time.sleep(2)
93
  return "", chat_history
94
+ '''
95
+ def respond(message, chat_history, base_model = "/home/henry/Desktop/ARIN7102/phi-2", device=device): # "meta-llama/Meta-Llama-3-70B"
96
  # define the model and tokenizer.
97
  # model = PhiForCausalLM.from_pretrained(base_model)
98
  model = AutoModelForCausalLM.from_pretrained(base_model)
 
120
  time.sleep(2)
121
  return "", chat_history
122
  #return bot_message
123
+
124
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
125
+
126
 
127
  # Launch the demo
128
  demo.launch()